
静岡大学令和4年博士論文

Stochastic Quasi-Newton Methods for Training
Neural Networks

確率的準ニュートン法の高速化によるニューラルネットワークの高効率学習

指導教官　西村　雅史　教授

静岡大学・創造科学技術大学院自然科学系・情報科学専攻

提出　2022年 6月
氏名　Indrapriyadarsini Sendilkkumaar

学生番号　55945032

Stochastic Quasi-Newton Methods for Training
Neural Networks

A thesis submitted in partial fulfillment for the degree of
Doctor of Philosophy

Indrapriyadarsini Sendilkkumaar
ID 55945032

Graduate School of Science and Technology
Shizuoka University

June 2022

Abstract

This thesis focuses on the study of stochastic quasi-Newton methods and ways to improve them for
training neural networks using the Nesterov’s acceleration scheme.

Neural networks have shown to be effective in a myriad of real-world applications. In recent years,
stochastic first-order methods such as the stochastic gradient descent and its variants have taken the
stage as the primary workhorse for training neural network models. This is mainly due to its affordable
per-iteration computational costs which are linear. Several studies have been devoted to improving
the convergence rates of first-order methods by introducing elegant ideas and algorithms, including
acceleration techniques (E.g. Momentum, NAG), adaptive regularization (E.g. Adagrad, RMSprop),
variance reduction (E.g. SAGA, SVRG), and many more.

On the contrary, second-order methods such as the Newton’s method have typically been much less
explored in training neural networks for large-scale problems, due to their prohibitive high per-iteration
computational cost required for the computation of the Hessian and its inverse. Although Newton’s
method comes with good theoretical guarantees, these operations are infeasible for large-scale problems
in high dimensions. Thus, a class of second-order quasi-Newton methods comes to the rescue, by
offering iterative approximations to the computation of the inverse Hessian at a lower per-iteration
cost. However, getting quasi-Newton methods to work in stochastic settings is a challenging task.
Thus, this thesis aims at devising robust and efficient accelerated stochastic quasi-Newton methods for
training neural networks. We propose a family of novel stochastic accelerated quasi-Newton methods,
for non-convex optimization that attains fast convergence while maintaining a linear per-iteration cost,
that match and improves over the performance of the best-known gradient-based methods.

The main contributions of this thesis are three-fold: First, we attempt to accelerate the conventional
quasi-Newton methods with momentum and Nesterov’s acceleration, with suitable modifications for
large-scale stochastic optimization, where the objective function and gradients are noisy estimates
computed from subsamples of the training data. We introduce direction normalization to reduce the
stochastic variance. The algorithms are proposed in both its full and limited memory forms. We also
provide discussions on the convergence rate and computational cost. The contents of this work are
discussed in Chapter 4 of the thesis.

Next, we focus on devising a new stochastic Nesterov’s accelerated quasi-Newton method suitable
for training long-sequences modeled by recurrent neural networks (RNNs). The proposed algorithm
targets to resolve the vanishing and/or exploding gradient issue that is common to RNNs by introducing
direction normalization and control heuristics, along with acceleration using the Nesterov’s gradient.
We then extend the proposed accelerated stochastic algorithm for application to a deep reinforcement
learning framework designed for solving an electronic design automation problem. The adaptability

ii

of the proposed algorithm to both supervised and reinforcement learning frameworks confirms its
robustness. The contents of this work are discussed in Chapter 5 and Chapter 6.

Finally, we investigate the feasibility of applying Nesterov’s acceleration to other quasi-Newton
methods, for both deterministic (full batch) and stochastic cases. We thus propose another Nesterov’s
accelerated quasi-Newton method that accelerates the symmetric rank-1 quasi-Newton method. The
proposed method uses the trust-region approach and the convergence guarantee is provided. The
results show that the performance of the proposed symmetric rank-1 method is significantly improved
compared to the conventional symmetric rank-1 method. The contents of this work are discussed in
Chapter 7 of the thesis.

iii

Acknowledgements

I would like to express my sincere gratitude to my supervisor Prof. Masafumi Nishimura for his
support towards completing my dissertation. I would also like to extend my heartfelt gratitude to Prof.
Hiroshi Ninomiya, Shonan Institute of Technology, for his valuable guidance and feedback towards my
research. I would also like to thank Prof. Takeshi Kamio, Hiroshima City University, and my former
supervisor Prof. Hideki Asai for their valuable support and engagement in my research activities. I
also thank Prof. Atsuhiko Kai, Prof. Jun Kondoh and Prof. Masakatsu Nishigaki, for serving as my
thesis review committee members along with Prof. Masafumi Nishimura and Prof. Hiroshi Ninomiya.

I thank all my labmates for their help and support both in lab and daily life. They were always
friendly and helpful and maintained a cheerful environment that was conducive to learning. I would
also like to thank Shahrzad Mahboubi from Shonan Institute of Technology. She has been a good
friend and an active supporter in all my activities.

I am also extremely grateful to my undergraduate mentor, Mr. Sastry Ramachandrula, who ignited
in me a spark towards research. He is an amazing mentor, well-wisher and friend, who always kept me
motivated and grounded, over all these years.

I am grateful to everyone at Shizuoka University for providing a great environment for pursuing
research. I owe immense gratitude to a lot of people who have made this journey memorable. Firstly, I
would like to thank Prof. Shashidhar Tantry for introducing me to this opportunity to study abroad
at Shizuoka University. Thanks to Prof. Mari Hakamata, Prof. Kanako Suzuki and all the language
teachers for helping me learn Japanese, which not only helped with the daily life but also opened several
opportunities during my stay in Japan. I am grateful to the Shizuoka University Asia Bridge Program,
Shizuoka Bank Corporation and Honjo Foundation for the scholarships and funds that were generously
awarded.

This journey would have never been pleasant without my amazing friends. Thanks to my roommate
Alka Singh for being the person who I can always count on. I thank all my friends for always cheering
and keeping me company, and building wonderful memories together.

I owe immense gratitute to Prof. Darius Greenidge for his valuable time and insights. I also thank
the student counsellor Ms. Ishikawa and the international students counsellor Prof. Mari Hakamata for
their support.

Last but not the least, I thank my family, parents and brother for motivating and supporting me in
all walks of life.

iv

Contents

Abstract ii

Acknowledgements iv

List of Figures viii

List of Tables x

List of Algorithms xi

1 Introduction 1
1.1 Motivation and Objective . 2
1.2 Thesis Outline . 3
1.3 Notation . 4

2 Optimization for Training Neural Networks 5
2.1 Introduction . 5
2.2 Gradient Based Optimization . 6
2.3 First Order Gradient Based Optimization . 8

2.3.1 Steepest Gradient Descent . 8
2.3.2 Momentum Acceleration . 9
2.3.3 Other Update Strategies . 11

2.4 Second Order Gradient Based Optimization . 13
2.4.1 Newton Methods . 13
2.4.2 Quasi-Newton Methods . 14

3 Quasi-Newton Methods for Training Neural Networks 15
3.1 Quasi-Newton Methods . 15

3.1.1 The SR1 Method . 16
3.1.2 The BFGS quasi-Newton Method . 17
3.1.3 Limited Memory BFGS Method . 18

3.2 Nesterov’s Acceleration . 19
3.3 Accelerated Quasi-Newton Methods . 20

v

3.3.1 The NAQ Method . 20
3.3.2 Limited Memory NAQ . 21
3.3.3 The MoQ Method . 21
3.3.4 Limited Memory MoQ . 22

3.4 Simulation Examples . 23
3.4.1 Sinusoidal function approximation problem 23
3.4.2 Levy function approximation problem . 25
3.4.3 Microstrip low pass filter modeling problem 26
3.4.4 Op-Amp circuit design optimization problem 28

4 Accelerated Stochastic Quasi-Newton Methods 31
4.1 Introduction . 31
4.2 Background . 31
4.3 Stochastic BFGS with Nesterov’s Acceleration . 33

4.3.1 Stochastic NAQ Method . 33
4.3.2 Stochastic Limited-Memory NAQ (oLNAQ) 35
4.3.3 Simulation Results . 36

4.4 Stochastic BFGS with Momentum Acceleration . 38
4.4.1 Stochastic MoQ Method . 38
4.4.2 MoQ Simulation Results . 39

4.5 Convergence Analysis . 43
4.6 Discussions . 50

4.6.1 Choice of step size . 50
4.6.2 Choice of parameters . 50
4.6.3 Computation and Storage Cost . 51

4.7 Summary . 52

5 Adaptive Stochastic Nesterov’s Accelerated quasi-Newton 53
5.1 Introduction . 53
5.2 Background . 54

5.2.1 adaQN . 55
5.3 Proposed aSNAQ Method . 55
5.4 Convergence Analysis . 57
5.5 Computational Cost . 62
5.6 Simulation Results . 62

5.6.1 Sequence Counting Problem . 62
5.6.2 Image Classification . 63
5.6.3 Character Level Language modeling . 64
5.6.4 Performance on LSTM . 66

5.7 Discussion . 66
5.8 Summary . 67

6 Quasi-Newton Methods for Deep Reinforcement Learning 69

vi

6.1 Introduction . 69
6.2 Background . 70
6.3 Nesterov’s Accelerated Quasi-Newton Method for Q-learning 71
6.4 VLSI Global Routing . 74

6.4.1 Global Routing Modelling . 74
6.4.2 Deep Reinforcement Learning Framework for Global Routing 75

6.5 Simulation Results . 76
6.5.1 Discussion on the choice of mL and mF . 77
6.5.2 Performance comparison of aSNAQ in routing 50 nets 78
6.5.3 Discussions on the performance . 81

6.6 Summary . 81

7 Accelerating Symmetric Rank-1 Quasi-Newton Method 83
7.1 Introduction . 83
7.2 Background . 84

7.2.1 Second-Order Quasi-Newton Methods . 84
7.2.2 Trust region approach . 86

7.3 Proposed L-SR1-N Method . 87
7.4 Convergence Analysis . 90
7.5 Simulation Results . 92

7.5.1 Results of the Levy Function Approximation Problem 93
7.5.2 Results of MNIST Image Classification Problem 94

7.6 Summary . 96

8 Conclusion 97
8.1 Summary . 97
8.2 Limitations and Future Work . 98

A Appendix 99
A.1 Two-loop recursion . 99
A.2 Sherman Morrison Woodbury Formula . 99

B List of Publications 100

Bibliography 103

vii

List of Figures

2.1 A simple neural network . 5
2.2 A simple block diagram of neural network training . 6
2.3 Trajectory of the gradient descent with step size � = 0.1 9
2.4 Trajectory of the classical momentum method with � = 0.1 and � = 0.8 10
2.5 Vector representation of CM and NAG update steps (Reproduced from [19]) 11
2.6 Trajectory of the Nesterov’s accelerated gradient method with � = 0.1 and � = 0.8 . . . 12
2.7 Evolution of the cost function during Newton method with level circles 14
3.1 The average training errors vs iteration count . 24
3.2 Comparison of network models of mBFGS and mNAQ vs original test data 25
3.3 Results on the Levy function approximation problem, averaged over 50 trials. 26
3.4 Training data set of microstrip lowpass filter (LPF). 27
3.5 Average training error vs epochs over 15 trials for LPF. 28
3.6 The comparison of network models of mNAQ vs original test data of LPF. 28
3.7 Two-Stage Op-Amp Schematic . 29
3.8 Train loss over 200 epochs (best case) . 30
4.1 Effect of direction normalization on 8x8 MNIST with b = 64 and � = 0.8. 34
4.2 Comparison of �k schedules on 8x8 MNIST with b = 64 and � = 0.8. 35
4.3 Results on 28 × 28MNIST for b = 64 (top) and b = 128 (bottom). 37
4.4 CNN Results on 28 × 28MNIST with b = 128. 38
4.5 Results of Wine Quality Dataset for b = 32 (left) and b = 64 (right). 38
4.6 Feedforward NN results on 8 × 8MNIST with b = 32. 40
4.7 Feedforward NN results on 28 × 28MNIST with b = 128. 41
4.8 Simple 2 layer CNN results on 28 × 28MNIST with b = 128. 42
4.9 The LeNet-5 architecture (Source: Yann LeCun et al. [60]) 42
4.10 LeNET-5 results on 28 × 28MNIST with b = 128. 43
4.11 A comparison of the step size decay schedules. 50
5.1 Structure of a recurrent neural network. 54
5.2 MSE for sequence counting problem. 63
5.3 Sequencing of the 28 × 28 pixel MNIST dataset for RNNs 63

viii

5.4 Error and accuracy for 28 × 28MNIST row by row sequence on training data. 64
5.5 Error and accuracy for 28 × 28MNIST pixel by pixel sequence on training data. 65
5.6 Error and accuracy for Character Level Language modeling (5-layer RNN) on test data. 65
5.7 Structure of a long-short term memory (LSTM) unit. 66
5.8 Error and accuracy for Character Level Language modeling on 2-layer LSTM network on

test data. 67
6.1 Reinforcement learning model (Reproduced from [76]). 69
6.2 Example of a routing solution. 75
6.3 Examples of routing of netlists generated by the problem set generator [89]. 76
6.4 Comparison of average reward for different values of mL and mF 77
6.5 Average reward over 25 benchmarks with 10 two-pin nets. 78
6.6 Average reward over 30 benchmarks with 50 two-pin nets. 79
6.7 Variation of loss over episodes. 80
7.1 Average results on levy function approximation problem with mL = 10 (full batch). . . . 93
7.2 Results of MNIST on fully connected neural network with b = 128 and mL = 8. 95
7.3 Results of MNIST on LeNet-5 architecture with b = 256 and mL = 8. 95

ix

List of Tables

3.1 Summary of simulation results of function approximation problem. 24
3.2 Summary of results on the Levy function approximation problem, averaged over 50 trials. 26
3.3 Summary of simulation results of microstrip low-pass filter (LPF). 27
3.4 Design Specification . 29
3.5 Summary of the results over 30 trials . 30
4.1 Summary of Computational Cost and Storage. 51
5.1 Summary of Computational and Storage Cost. 62
6.1 Summary of the results on 30 benchmarks with 50 nets. 80

x

List of Algorithms

2.1 GD Method . 9
2.2 Momentum Method . 10
2.3 NAG Method . 11
3.1 SR1 Method . 17
3.2 BFGS Method . 19
3.3 NAQ Method . 21
3.4 MoQ Method . 22
4.1 Stochastic BFGS Method - oBFGS . 33
4.2 Stochastic NAQ Method - oNAQ . 34
4.3 Stochastic MoQ Method - oMoQ . 39
5.1 adaQN Method . 56
5.2 aSNAQ Method . 57
6.1 aSNAQ for DQN . 72
7.1 adjustTR . 86
7.2 L-SR1-N Method . 89
7.3 CG-Steihaug . 89
A.1 Direction Update - Two-loop Recursion . 99

xi

1

Introduction

Optimization forms the core in several areas of engineering, statistics, machine learning, neural
networks, quantum computing, fundamental sciences, and more. In general, optimization is the
minimization or maximization of a function, subject to constraints on its variables. A good optimization
algorithm is expected to perform well across different types of problems (robustness) with reasonable
computation and storage costs (efficiency) and less sensitivity to error and noise (accuracy) [1]. In
the era of immense data, the effectiveness and efficiency of the optimization algorithms dramatically
influence the popularization and application. The popularity of machine learning has been ever
increasing over the last decade and has become one of the integral set of artificial intelligence and data
science. Hence there is a dire need for solving large scale non-linear optimization problems.

Classical machine learning models are either convex or can be reduced to a convex optimization
problems and can be efficiently solved using gradient based methods, ensuring convergence to a global
optimum [2]. Much complex models especially those of deep learning (deep neural networks), however
are difficult as they result in non-smooth, non-convex optimization problems.

Training deep neural networks poses several challenges such as ill-conditioning, high non-linearity
of the objective function, hyperparameter tuning, overparmeterization etc. These challenges are
usually addressed either by or in combination of model changes (such as increasing the depth of the
network or number of hidden units), architectural changes (such as LSTMs and GRUs), changing the
objective function (such as introducing regularization), and sophisticated weight update strategies or
optimization techniques (such as Adam, Adagrad, adaHessian, etc). In this thesis, we focus on the
optimization algorithms used in training neural networks. It is notable that optimization in deep neural
networks (DNNs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and
deep reinforcement learning (DRL), each encounter different difficulties and challenges based on the
problem considered.

For example, RNNs popularly used in NLP, are powerful sequence models. But despite their
capabilities in modeling sequences, RNNs are particularly very difficult to train long sequences with
long-term dependencies due to the vanishing and/or exploding gradient problem. Hence several
algorithms and architectures have been proposed to address the issues involved in training RNNs.

Similarly, training neural networks in deep reinforcement learning tasks is usually slow and
challenging, due to the training data being temporally correlated, non-stationary, and presented as a
continuous stream of experiences rather than batches, which in contrast to supervised learning makes
it more prone to unlearning effective features over time. Even in supervised learning, most real world

1

CHAPTER 1. INTRODUCTION

applications demand the model to be trained on a continuous stream of data (online), that are highly
challenging to model due to the high stochastic noise and non-linearity and non-smoothness of the
functions. Increasing the number of parameters or depth of the network has always been the first resort
for solving high non-linearity. However studies on overparameterization [3, 4] suggest that increasing
the depth of the neural network architecture leads to faster training as a result of increased expressive
power, and not an outcome of the so-called robust optimizer itself. Moreover, overparameterization
coupled with large scale optimization and the immense amount of data that needs to be processed in
training a large neural network further increases the load on computation and storage costs. Hence,
there is a trade-off between the scale of the network and its expressive power and thus a robust optimizer
must not only perform well on large networks, but also on smaller neural networks.

1.1 Motivation and Objective

Machine learning models have made remarkable impact in several real-world applications. These
machine learning models eventually reduce to an optimization problem that are solved with conventional
mathematical optimization methods. Iterative gradient based algorithms have been widely used in
optimization and have been actively researched in order to devise robust and efficient algorithms that
result in accurate solutions. These algorithms can be broadly categorized as (1) first-order methods (eg.
SGD, Adam) (2) higher order methods (eg. Newton method, quasi-Newton method) and (3) heuristic
derivative-free methods (eg. coordinate descent, SPSA), each with its own pros and cons. Apart
from introducing sophisticated update strategies, several works are also dedicated toward acceleration
techniques (eg. momentum method, Nesterov’s acceleration, Anderson’s acceleration). Much progress
has been made in the last 20 years in designing and implementing robust and efficient methods and yet
there are many classes of applications where current state of the art optimizers fails.

Optimization in machine learning is presently dominated by first-order methods such as SGD and
Adam. However, these methods come with well-known issues such as slow convergence, sensitivity
to hyperparameter settings, stagnation at high training errors, and difficulty escaping flat regions and
saddle points. These problems are significantly prominent and prone to in highly non-convex settings
such as in the case of neural network training. On the other hand, second-order methods are among
the most powerful algorithms in mathematical optimizations. Recent studies in second-order methods
have shown to alleviate these shortcomings by capturing the curvature information. Despite the strong
theoretical properties, second-order methods are less prevalent in machine learning and deep learning
due to the high computation and storage costs. However, there have been several recent studies under
quasi-Newton methods that show great efficiencies with convergence in fewer steps or iterations and at
a moderate computational cost with better scalability for large scale optimization.

In light of the above, this thesis aims to investigate if acceleration techniques such as introducing
momentum or Nesterov’s acceleration to second-order methods outperform conventional methods and
avoid overparameterization, and more importantly, if they are robust, efficient and practical. To this end,
we study the efficiency, robustness and accuracy of the Nesterov’s acceleration applied to quasi-Newton
methods and develop practical algorithms for real-world problems. The main contributions of this thesis
are three-fold. First we attempt to accelerate the conventional quasi-Newton methods with momentum
and Nesterov’s acceleration, with suitable modifications for large scale stochastic optimization. Next,
we focus on devising a new stochastic Nesterov’s accelerated quasi-Newton method suitable for training

2

CHAPTER 1. INTRODUCTION

long-sequence models and extending its application to deep reinforcement learning framework to
confirm robustness across applications. Lastly, we investigate the feasibility of Nesterov’s acceleration
applied to other quasi-Newton methods such as the symmetric rank-1 method. Both theoretical and
empirical analysis of the proposed algorithms are discussed. The main objectives of this thesis can be
listed as follows:

• Study the fundamentals of first-order and second-order methods in training neural networks.
• Investigate the feasibility of Nesterov’s acceleration on algorithms in the quasi-Newton family.
• Devise robust and efficient accelerated second-order optimizers suitable for stochastic training.
• Analyze computational cost and convergence guarantees.

1.2 Thesis Outline

The rest of the thesis is organized as follows:
• Chapter 2 : This chapter introduces the basics of optimization in the context of training neural

networks and gives an overview of common gradient based optimization algorithms used in
neural networks.

• Chapter 3 : This chapter gives an overview of quasi-Newton methods for training neural
networks. The performance of quasi-Newton methods in comparison to first-order methods is
studied in the deterministic (full batch) setting on a few function approximation problems and
applications related to circuit modeling and design optimization.

• Chapter 4 : This chapter discusses stochastic training of neural networks with quasi-Newton
methods for large scale optimization. Stochastic extensions of the Nesterov and momentum
accelerated BFGS methods are proposed along with their convergence analysis.

• Chapter 5 : This chapter focuses on recurrent neural networks. The common problems in
training recurrent neural networks are studied and an adaptive stochastic Nesterov’s accelerated
quasi-Newton method is proposed along with its convergence rate analysis.

• Chapter 6 : This chapter investigates the utility of quasi-Newton optimization methods in
deep reinforcement learning applications. In extension to the work in the previous chapter, the
accelerated stochastic quasi-Newton method is adapted to training deep Q-networks. With the
example of solving VLSI global routing using deep reinforcement learning, a combinatorial
optmization problem, the efficiency and robustness of the proposed method is demonstrated.

• Chapter 7 : This chapter investigates the feasibility of introducing Nesterov’s acceleration to
other members of the quasi-Newton family. This chapter introduces momentum and Nesterov’s
acceleration to the SR1 method, a low rank quasi-Newton method, in deterministic and stochastic
training.

• Chapter 8 : This chapter concludes with summarizing the contributions of this study along with
future research directions.

3

CHAPTER 1. INTRODUCTION

Each chapter is self-contained and the necessary notations and backgrounds are introduced in each
chapter.

1.3 Notation

We breifly describe in this section the notations followed throughout the thesis. Lowercase letters are
used to denote scalars and vectors while uppercase letters are used to denote matrices. In general, all
vectors are column vectors denoted by boldface lowercase characters (Eg. w ∈ ℝd). The matrices are
denoted by boldface uppercase characters (Eg. X ∈ ℝd×d) and scalars by simple lowercase characters
(Eg. �). The superscript T denotes the transpose of the vector or matrix. Non-bold uppercase characters
(such as X) are used to denote sets. The scalars, vectors and matrices at each iteration bear the
corresponding iteration index k as a subscript. The “big O” notation O(⋅) is used for the computational
complexity. We use the notation ‖ ⋅ ‖ to denote the L2 or Euclidean norm i.e., ‖x‖ ∶=

√

xTx. In
addition to the above, the following symbols and notation are reserved throughout the thesis.

• iteration index k ∈ ℕ ∶ k = 1, 2, ..., kmax ∈ ℕ

• n is the number of total samples in Tr and is given by |Tr|.
• b is the number of samples in the minbatch X ⊂ Tr and is given by |X|.
• d is the number of parameters of the neural network.
• m is the limited memory size.
• �k is the learning rate or step size.
• �k is the momentum coefficient, chosen in the range (0,1).
• E(w) is the error evaluated at w.
• ∇E(w) is the gradient of the error function evaluated at w.

4

2

Optimization for Training Neural Networks

2.1 Introduction

Many machine learning models are often cast as continuous optimization problems in multiple variables.
In supervised machine learning, given a dataset Tr with n samples, each sample comprises of an input
data and output label pair (ip, dp), and a parameterized model maps the function from the set of input
data to the labels. These parameterized models could be decision trees, SVMs, neural networks, etc. In
this thesis, we focus on neural network models.

Figure 2.1: A simple neural network

Inspired by the concept of their biological neural network, artificial neural networks have gained
immense popularity in the field of machine learning and artificial intelligence. Neural networks and
deep learning currently provide the best solutions to many problems in image recognition, speech
recognition, and natural language processing. A typical neural network consists of an input layer,
hidden layer(s) and an output layer interconnected by parameters called weights. Each unit of a layer is
called a neuron. Neural networks with a few hidden layers are called shallow neural networks while
networks with several hidden layers are called deep neural networks. Neural networks have been
developed from a simple architecture to a more and more complex structure, such as convolutional
neural networks and recurrent neural networks, for practical applications.

Training a neural network involves updating the weights of the network in such a way that the
error between the outputs predicted by the neural networks and the actual response being modeled is

5

CHAPTER 2. OPTIMIZATION FOR TRAINING NEURAL NETWORKS

minimized. This essentially comes down to an optimization problem where the objective is to minimize
the total error, which in other words is an empirical risk minimization problem. Formally, the empirical
risk is given as an error or loss function E(w) where w ∈ ℝd are the parameters or weights of the
neural network model under consideration. The error function E(w) can be expressed as a sum of
losses (risks) over individual training samples.

Figure 2.2: A simple block diagram of neural network training

A popular method of training neural networks is the error back-propagation (BP) algorithm which
uses gradient descent to systematically modify or update the weights of the neural network by an
amount proportional to the partial derivative of the accumulated error function, with respect to a given
weight. The goal with backpropagation is to update each of the weights in the network so that they
cause the neural network predicted output to be closer to the desired output (true label), by minimizing
the error for each output neuron and the network as a whole.

2.2 Gradient Based Optimization

Machine learning algorithms often rely on optimization of some objective function, thus making the
choice of the optimization algorithm a crucial part of the learning. Training in neural networks is an
iterative process in which the parameters are updated in order to minimize an objective function. Given
a dataset Tr with samples (ip, dp)p∈Tr drawn at random, and a function Ep(w; ip, dp) parameterized by a
vector w ∈ ℝd , the objective function is defined as

min
w∈ℝd

E(w) = 1
|Tr|

∑

p∈Tr

Ep(w), (2.1)

where Ep(w) is the loss or error function. In case of regression problems, the most commonly used
error function is the mean squared error (MSE), also known as the L2 loss, and is defined as,

Ep(w) =
1
2
(dp − op)2 (2.2)

where dp and op are the desired output (true label) and neural network predicted output, respectively.
For classification problems, cross entropy error, also known as the log loss is widely used. The cross
entropy error for a multi-class classification problem with M classes is defined as follows.

Ep(w) = −
M
∑

c=1
dp log op. (2.3)

6

CHAPTER 2. OPTIMIZATION FOR TRAINING NEURAL NETWORKS

As discussed earlier, in order to minimize the empirical risk given in (2.1), a natural approach is to
use a gradient method. In gradient based methods, the objective function E(w) under consideration is
minimized by the iterative formula,

wk+1 = wk + vk+1, (2.4)
where k is the iteration count and vk+1 is the update vector, which is defined for each gradient algorithm.
In case of the simple gradient descent algorithm, vk+1 is given as

vk+1 = −�k∇E(wk), (2.5)
where �k is the learning rate or step size and∇E(wk) is the gradient of the objective function computed
with respect to wk over all samples in the training set, i.e.,

∇E(wk) =
1
|Tr|

∑

p∈Tr

∇Ep(wk). (2.6)

This type of training is known as full batch or deterministic training, where the algorithms used to
train the neural networks require computation of the gradient with respect to the parameters w over all
samples in the training set. In other words, the weights of the neural network are updated based on
the expected sum of gradients computed over all samples in the training dataset. Typically the cost of
gradient computation is of the order O(nd) where n is the number of samples in the training set and d
is the number of parameters of the neural network. It is thus evident that as the scale of the network
increases and if the number of training examples is extremely large, it can result in huge computational
and storage costs. Thus stochastic or mini-batch training approaches have become popular. In stochastic
training, the objective function and gradients are computed over a smaller subset, X ⊆ Tr of size b,
randomly drawn from of the training data. Note that we denote the stochastic objective function with
the subscript b as

Eb(w) =
1
|X|

∑

p∈X
Ep(w), (2.7)

and the gradient ∇Eb(wk, Xk) denotes the gradient computed over the mini sample Xk.

∇Eb(wk, Xk) =
1

|Xk|

∑

p∈Xk

∇Ep(wk) (2.8)

Stochastic training is faster compared to the full batch approach and the computation cost is reduced
to O(bd) as the function and gradient are evaluated on a smaller sub-sample with b << n. However,
the stochastic gradients are noisy estimates of the full gradient. Therefore, each update step is noisy,
resulting in more update steps being required for convergence. This gave rise to the need for several
stochastic variance reduction techniques such as in [5–8].

Training neural networks can be challenging as the objective functions modeled by a neural net-
work are usually non-convex and might have local optima, flat regions and saddle points in the loss
surface [2]. As a result, the learning process might be too slow or arrive at a poor solution. The simplest
approach to address both flat regions and differential curvature is to adjust the gradients in some way
to account for poor convergence. This includes implicitly using the curvature to adjust the gradients of
the objective function with respect to each parameter. Examples of such techniques include the pairing
of vanilla gradient-descent methods with computational algorithms like the momentum method, NAG,
RMSProp, or Adam. There are yet another class of methods that uses second-order derivatives to

7

CHAPTER 2. OPTIMIZATION FOR TRAINING NEURAL NETWORKS

explicitly measure the curvature. A second derivative provides the rate of change in gradient, which is
a direct measure of the unpredictability of using a constant gradient direction over a finite step. The
second-derivative matrix or the Hessian matrix thus contains useful information about the directions
along which the greatest curvature occurs and is used by techniques like the Newton method in order
to adjust the directions of movement by using a trade-off between the steepness of the descent and the
curvature along a direction.

In the following sections, we briefly discuss on some of the first and second-order gradient based
algorithms with a simple example. Consider an arbitrary function with two parameters {x1, x2} defined
as follows.

f (x) = 1
2
x21 +

5
2
x22 − x1x2 − 2(x1 + x2) (2.9)

with the global minimum located at {x1, x2} = {3, 1}. We set the initial points of {x1, x2} = {2, 1},
and visualize the trajectories of the algorithm on a contour plot.

2.3 First Order Gradient Based Optimization

In case of first-order methods, the weights of the neural network are updated using only the gradient
information or the first-order derivative. Thus owing to the simplicity in implementation and low
computational complexity, optimization in machine learning and neural network training have been
dominated by first-order gradient methods. For large scale problems too, several works have been
studied under stochastic first-order methods and its variance-reduced and accelerated variants [5,9–17].
However, first-order methods are more sensitive to hyperparameter tuning and often exhibit slow
convergence. Some of the popular first-order methods are discussed briefly below.

2.3.1 Steepest Gradient Descent

The gradient descent method is one of the earliest and simplest algorithm for finding the minimum of
an objective function. The gradient descent method is based on the fact that the gradient of a function
always points in the direction of maximum increase, and hence by moving in the direction opposite to
that of the gradient will result in an improvement in minimizing the value of the objective function.
Therefore, the update vector vk is given as

vk+1 = −�k∇E(wk) (2.10)
The algorithm of the gradient descent method is given in Algorithm 2.1. The learning rate �k is an
important parameter in SGD as it determines the step size along the direction of the gradient ∇E(wk).
If the step size is too large, the behaviour of the algorithms will get very noisy which can lead to
inability to converge to a reasonable value. If the step size is too small however, the algorithm may get
stuck in an area where the gradient is small. In practice it is common to let the learning rate be fixed,
adaptive or use simple decay schedules such as,

�k =
�

� + k
�0 (2.11)

There are also variants of SGD that uses line search to determine the optimal step size at each iteration.
The gradient descent method although simple, has been successful in several problems. However, the

8

CHAPTER 2. OPTIMIZATION FOR TRAINING NEURAL NETWORKS

convergence can be slow and may even also not be suitable for complex and highly non-linear problems.
Figure 2.3 below show the trajectory of the gradient descent algorithm for the function in (2.9). As
seen from the figure, it took 169 steps to converge to the optimum point with a learning rate of 0.1.
The learning rate was chosen from the set {0.001, 0.01, 0.1, 1}, that gave the least number of steps to
converge.

Figure 2.3: Trajectory of the gradient descent with step size � = 0.1

2.3.2 Momentum Acceleration

Classical Momentum

The classical momentum method (CM) accelerates the gradient descent method by accumulating
previous vector updates in direction of persistent reduction [18]. The momentum based methods are
set to address issues with escaping local minima and flat regions. The momentum term in mathematics
is built on the physics analogy of a heavy ball rolling downhill gains a momentum velocity along its
trajectory, and hence this method is also known as the heavy ball method. The update vector of the

Algorithm 2.1 GD Method
Require: " and kmax
Initialize: wk ∈ ℝd .
1: k← 1
2: while ‖E(wk)‖ > " and k < kmax do
3: Calculate ∇E(wk)
4: vk+1 ← −�k∇E(wk)
5: wk+1 ← wk + vk+1
6: k← k + 1
7: end while

9

CHAPTER 2. OPTIMIZATION FOR TRAINING NEURAL NETWORKS

momentum method is given by:
vk+1 = �vk − �k∇E(wk). (2.12)

where � ∈ (0, 1) denotes the momentum term. The momentum method is shown in Algorithm 2.2.
Further, Figure 2.4 shows the trajectory of the momentum method for the function in (2.9) and it can
be observed that with a momentum � = 0.8, the momentum method converges faster by 58 steps for
the same learning rate of 0.1.
Algorithm 2.2 Momentum Method
Require: 0 < �k < 1, " and kmax
Initialize: wk ∈ ℝd and vk = 0.
1: k← 1
2: while ‖E(wk)‖ > " and k < kmax do
3: Calculate ∇E(wk + �kvk)
4: vk+1 ← �kvk − �k∇E(wk)
5: wk+1 ← wk + vk+1
6: k← k + 1
7: end while

Figure 2.4: Trajectory of the classical momentum method with � = 0.1 and � = 0.8

Nesterov’s Accelerated Gradient

The Nesterov’s Accelerated Gradient (NAG) method is a modification of the classical momentum
method in which the gradient is computed at wk + �vk instead of wk [20]. Thus, the update vector is
given by:

vk+1 = �kvk − �k∇E(wk + �vk). (2.13)
where ∇E(wk + �vk) is the gradient at wk + �vk and is referred to as Nesterov’s accelerated gradient
vector. By computing the gradient at a point along the momentum direction and then taking a step update

10

CHAPTER 2. OPTIMIZATION FOR TRAINING NEURAL NETWORKS

Figure 2.5: Vector representation of CM and NAG update steps (Reproduced from [19])

results in further acceleration of the gradient descent method compared to the classical momentum
method. The algorithm is as shown in Algorithm 2.3. Figure 2.5 shows the vector representation of the
classical momentum and Nesterov’s accelerated gradient method.
Algorithm 2.3 NAG Method
Require: 0 < �k < 1, " and kmax
Initialize: wk ∈ ℝd and vk = 0.
1: k← 1
2: while ‖E(wk)‖ > " and k < kmax do
3: Calculate ∇E(wk + �kvk)
4: vk+1 ← �kvk − �k∇E(wk + �kvk)
5: wk+1 ← wk + vk+1
6: k← k + 1
7: end while

From Figure 2.4 and Figure 2.6 we can observe that for the same learning rate �k = 0.1 and
momentum factor � = 0.8, the Nesterov’s accelerated gradient converges to the optimum in 79 steps
while the classical momentum took 111 steps. However both the momentum accelerated methods
converged in fewer steps compared to the vanilla gradient descent method.

2.3.3 Other Update Strategies

Apart from accelerating the gradient descent method using momentum or Nesterov’s gradient, several
methods have been proposed that devise sophisticated update strategies such as [12, 21–25] that have
shown to perform better than the vanilla gradient descent method. Among these, the methods most
commonly used in neural network training are briefly discussed below.

AdaGrad

Adagrad [12] is an algorithm for gradient-based optimization that adapts the learning rate to the
parameters, thus performing smaller updates. Adagrad uses a per coordinate step size which depends
on the scale of past gradients. The update vector is given as

vk+1 = −
�

√

∑

k(∇E(wk))2 + �
∇E(wk). (2.14)

11

CHAPTER 2. OPTIMIZATION FOR TRAINING NEURAL NETWORKS

Figure 2.6: Trajectory of the Nesterov’s accelerated gradient method with � = 0.1 and � = 0.8

� is a global stepsize shared by all dimensions and is usually set to � = 0.01. Adagrad proved effective
for sparse optimization but when applied to deep learning, it was under-performing [26]. This was
due to the large impact of past gradients which prevented it from adapting to local changes in the
smoothness of the objective function.

RMSprop

The RMSprop method [21] improves upon the AdaGrad method by using an exponential moving
average instead of a cummulative sum to reduce the impact of past gradients. The update vector is
given by

vk+1 = −
�

√

�k,i + �
∇E(wk), (2.15)

where
�k = �k−1 + (1 −)(∇E(wk))2. (2.16)

where � = 10−8 and �k is the exponential moving average of the gradient. is the decay factor and � is
the global stepsize, usually set to 0.9 and 0.001 respectively.

Adam

Adam is one of the most popular and effective first-order methods and is based on adaptive estimates
of the first and second moments. The update rule in the algorithm is based on exponentially decaying
moving average of past squared gradients and exponentially decaying moving average of past gradients
[22]. The algorithm introduces two new hyperparameters 0 ≤ �1, �2 < 1 that control the exponential
decay rates of these running averages. The running average themselves are estimates of the first moment
(the mean) and the second raw moment (the uncentered variance) of the gradient. �1 and �2 are chosen

12

CHAPTER 2. OPTIMIZATION FOR TRAINING NEURAL NETWORKS

to be 0.9 and 0.999, respectively. The estimatesm and � when initialized to zero get biased towards
zero and are corrected by the bias-corrected estimates m̂ and �̂.

vk+1 = −�
m̂k

(
√

�̂k + �)
, (2.17)

where
m̂k =

mk

(1 − �k1)
, (2.18)

�̂k =
�k

(1 − �k2)
, (2.19)

where, mk and �k given by:
mk = �1mk−1 + (1 − �1)∇E(wk), (2.20)
�k = �2�k−1 + (1 − �2)(∇E(wk))2. (2.21)

where � = 10−8 and �k1 and �k2 denote the k-th power of �1 and �2, respectively. � is the global stepsize
and the recommended value is � = 0.001. �1 and �2 are chosen to be 0.9 and 0.999, respectively [22].

2.4 Second Order Gradient Based Optimization

When it comes to highly non linear problems, first-order methods converge quite slowly and are
often prone to getting stuck at local minima and flat regions. Incorporating second-order curvature
information for training neural networks can improve convergence and avoid local minima, flat regions
and saddle points. Second-order methods such as the Newton method, use both the gradient and
second-order curvature information or the Hessian to determine the search direction. These methods
typically exhibit quadratic rates of convergence.

2.4.1 Newton Methods

The second-order Taylor series of the objective function (2.1) around some point wk + d is given as

E(wk + d) ≈ mk(d) ≈ E(wk) + ∇E(wk)Td +
1
2
dT∇2E(wk)d. (2.22)

The Taylor approximation is minimized when ∇mk(d) = 0, and thus we have the iteration scheme,

wk+1 = wk − �kHk∇E(wk) (2.23)

where Hk is the inverse of the Hessian matrix Bk = ∇2E(wk) = H−1k and �k is the step size which is
set to 1 or usually determined using line search or trust region method. This method of optimization,
where we take into account the objective function’s second-order behavior in addition to its first-order
behavior, is known as Newton’s method. At iteration k, the Newton method approximates the function
at the point wk with a paraboloid, and then proceeds to minimize that approximation by stepping to the
minimum of that paraboloid. Figure 2.7 shows that the Newton method converged to the minimum in
just one step. The main bottleneck in second-order methods is the serious computational challenges
involved in the computation of the Hessian, ∇2E(wk) and its inverse, for large-scale problems, in which
it is not practical because n is large.

13

CHAPTER 2. OPTIMIZATION FOR TRAINING NEURAL NETWORKS

Figure 2.7: Evolution of the cost function during Newton method with level circles

2.4.2 Quasi-Newton Methods

Quasi-Newton methods form an alternative class of first-order methods for solving the large-scale
nonconvex optimization problem in deep learning. These methods, like in SGD, require only computing
the first-order gradient of the objective function. By measuring and storing the difference between
consecutive gradients, quasi-Newton methods construct quasi-Newton matrices Bk which are low-rank
updates to the previous Hessian approximations for estimating ∇2E(wk) at each iteration. They build a
quadratic model of the objective function by using these quasi-Newton matrices and use that model to
find a sequence of search directions that can result in superlinear convergence. Since these methods do
not require the second-order derivatives, they are more efficient than Newton’s method for large-scale
optimization problems [1].

14

3

Quasi-Newton Methods for Training Neural
Networks

Algorithms that seek to achieve some of the advantages of the Newtonmethodwithout the computational
complexity of the Hessian and its inverse are called quasi-Newton methods. This chapter discusses
some of the quasi-Newton methods such as the SR1, BFGS and accelerated quasi-Newton (NAQ and
MoQ) methods for training neural networks. The focus of this thesis is on the accelerated quasi-Newton
method and hence this chapter serves to provide the necessary background for the chapters that follow.
We discuss the effectiveness of these methods in comparison to popular first-order methods with
examples on simple neural network structures for modeling function approximation problems and
circuit modeling problems. The simulation examples discussed in this chapter are based on the results
published in [27], [28], and [29].

3.1 Quasi-Newton Methods

We begin with the derivation of quasi-Newton methods with the quadratic model of the objective
function at an iterate wk given as

E(wk + d) ≈ mk(d) ≈ E(wk) + ∇E(wk)Td +
1
2
dT∇2E(wk)d. (3.1)

In order to find the minimizer dk, we equate ∇mk(d) = 0 and thus have
dk = −∇2E(wk)−1∇E(wk) = −B−1k ∇E(wk) . (3.2)

The new iterate wk+1 is given as,
wk+1 = wk − �kB−1k ∇E(wk) = wk + �kdk, (3.3)

and the quadratic model at the new iterate is given as
E(wk+1 + d) ≈ mk+1(d) ≈ E(wk+1) + ∇E(wk+1)Td +

1
2
dTBk+1d , (3.4)

where �k is the step length and B−1k = Hk and its consecutive updates B−1k+1 = Hk+1 are symmetric
positive definite matrices satisfying the quasi-Newton (or secant) condition.

Quasi-Newton methods are a generalization of the secant method, where the secant method can be
thought of as a finite-difference approximation of Newton’s method. Thus it is necessary for quasi-
Newton methods to satisfy the secant condition. Thus, we require that the gradient of mk+1 should

15

CHAPTER 3. QUASI-NEWTON METHODS FOR TRAINING NEURAL NETWORKS

match the gradient of the objective function at the last two iterates wk and wk+1. In other words, we
impose the following two requirements on Bk+1,

∇mk+1|d=0 = ∇E(wk+1 + d)|d=0 = ∇E(wk+1), (3.5)
∇mk+1|d=−�kdk = ∇E(wk+1 + d)|d=−�kdk

= ∇E(wk+1 − �kdk) = ∇E(wk).

From (3.4),
∇mk+1(d) = ∇E(wk+1) + Bk+1d. (3.6)

Substituting d = 0 in (3.6), the condition in (3.5) is satisfied. From (3.1) and substituting d = −�kdk
in (3.6), we have

∇E(wk) = ∇E(wk+1) − �kBk+1dk. (3.7)
Substituting for �kdk from (3.12) in (3.7), we get

∇E(wk) = ∇E(wk+1) − Bk+1(wk+1 − wk). (3.8)
On rearranging the terms, we have the secant or quasi-Newton condition.

yk = Bk+1sk, or sk = Hk+1yk, (3.9)
Thus from the secant condition we have

sk = wk+1 − wk = �kdk (3.10)
yk = ∇E(wk+1) − ∇E(wk) (3.11)

which are call the curvature information pair. Recall that the updates of quasi-Newton is given as
wk+1 = wk − �kHk∇E(wk) (3.12)

and the inverse Hessian Hk is iteratively updated using a low rank approximation satisfying the secant
condition (3.9). Various quasi-Newton methods have been developed over the years, and they differ in
how the approximate Hessian is updated at each iteration.

3.1.1 The SR1 Method

The Symmetric Rank-1 (SR1) method is a simple quasi-Newton method that uses a rank-one update
for updating the Hessian approximation of the function being optimized [1]. The rank-one update of
Bk is given by

Bk+1 = Bk + �uuT, (3.13)
where � and u are chosen such that they satisfy the secant condtion in (3.9). Substituting (3.13) in
(3.9), we get

yk = Bksk + (�uTsk)u. (3.14)
Since (�uTsk) is a scalar, we can deduce u as a scalar multiple of yk − Bksk and thus have

(yk − Bksk) = ��2[sTk(yk − Bksk)](yk − Bksk), (3.15)

16

CHAPTER 3. QUASI-NEWTON METHODS FOR TRAINING NEURAL NETWORKS

where
� = sign[sTk(yk − Bksk)] and � = ±|[sTk(yk − Bksk)]|

1∕2 . (3.16)
Thus the symmetric rank-1 (SR1) update of the Hessian is given as

Bk+1 = Bk +
(yk − Bksk)(yk − Bksk)T

(yk − Bksk)Tsk
. (3.17)

By applying the Sherman-Morrison-Woodbury formula (see Appendix A.2), we can find B−1k+1 = HSR1k+1
as

HSR1k+1 = H
SR1
k +

(sk −HSR1k yk)(sk −HSR1k yk)T

(sk −HSR1k yk)Tyk
, (3.18)

where,
sk = wk+1 − wk and yk = ∇E(wk+1) − ∇E(wk) (3.19)

The main drawback of SR1 updating is that the denominator in (3.18) may vanish and that it does
not guarantee positive definiteness. However, the matrices generated by the SR1 formula tend to
be good approximations to the true Hessian matrix [1]. Further, SR1 with trust region approach is
known to guarantee positive definiteness and have bounded Hessian approximations that guarantees
convergence. Trust-region methods attempt to find the search direction, in a region within which they
trust the accuracy of the quadratic model of the objective function. The SR1 algorithm using trust
region approach is as shown in Algorithm 3.1.
Algorithm 3.1 SR1 Method
1: while ‖∇E(wk)‖ > � and k < kmax do
2: Compute ∇E(wk)
3: Find sk by solving the subproblem

min
s

∇E(wk)Ts +
1
2
sTBks, subject to ‖s‖ ≤ Δk

4: Compute yk = ∇E(wk+1) − ∇E(wk)
5: Compute �k = E(wk)−E(wk+sk)

mk(0)−mk(sk)6: if �k ≥ � then
7: Set wk+1 = wk + vk+1
8: else
9: Set wk+1 = wk
10: end if
11: Δk+1 = adjustTR(Δk, �k)
12: if |sTk(yk − Bksk)| ≥ � ‖sk‖ ‖yk − Bksk‖ then
13: Update Bk using (3.18)
14: else
15: Bk+1 ← Bk
16: end if
17: end while

3.1.2 The BFGS quasi-Newton Method

SR1 updates are easy to use, but they have the disadvantage that the Hessian matrix Bk is not guaranteed
to be positive definite, and thus the search direction gk is not guaranteed to be a descent direction. The
Broyden-Fletcher-Goldfarb-Shanon (BFGS) algorithm [1] is one of the most popular quasi-Newton

17

CHAPTER 3. QUASI-NEWTON METHODS FOR TRAINING NEURAL NETWORKS

methods that overcomes the weaknesses of SR1. It is by far the most successful quasi-Newton method
for unconstrained optimization due to its computational efficiency and good asymptotic convergence.
In the BFGS method, the Hessian Bk is updated using a symmetric rank-2 matrix as shown below.

Bk+1 = Bk + auuT + bvvT (3.20)

where u and v are linearly independent non-zero vectors and a and b are constants, chosen to satisfy
the secant condition.

Bk+1sk = Bksk + auuTsk + bvvTsk = yk. (3.21)
A natural choice for u and v would be u = yk and v = Bksk. We thus have,

Bksk + aykyTksk + bBksks
T
kB

T
k sk = yk. (3.22)

Bksk(1 + bsTkB
T
k sk) = yk(1 − ay

T
ksk). (3.23)

⇐⇒ a = 1
yTksk

, b = − 1
sTkB

T
k sk

(3.24)

Substituting for a, b, u and v in (3.20), we have

Bk+1 = Bk +
ykyTk
yTksk

−
BksksTkB

T
k

sTkB
T
k sk

(3.25)

The inverse of the Hessian matrix B−1k = HBFGSk can be obtained using the Sherman-Morrison-
Woodbury formula (Appendix A.2) as

HBFGSk+1 =
(

I −
yksTk
yTksk

)

HBFGSk

(

I −
yksTk
yTksk

)

+
sksTk
yTksk

, (3.26)

where I denotes identity matrix. Thus the weight update using the BFGS formula is given as

wk+1 = wk − �kHBFGSk ∇E(wk), (3.27)

where HBFGSk is updated using (3.26) with

sk = wk+1 − wk and yk = ∇E(wk+1) − ∇E(wk) (3.28)

and �k is the step size which is usually determined by a line search procedure such as Armijo or Wolfe
search. The Armijo line search condition is as shown below.

E(wk + �kgk) ≤ E(wk) + ��k∇E(wk)Tgk, (3.29)

The BFGS quasi-Newton algorithm is shown in Algorithm 3.2.

3.1.3 Limited Memory BFGS Method

The limited memory BFGS (LBFGS), is a variant of the BFGS quasi-Newton method, designed for
solving large-scale optimization problems such as training deep neural network models. As the scale of
the neural network model increases, the O(d2) cost of storing and updating the Hessian matrix HBFGSk

18

CHAPTER 3. QUASI-NEWTON METHODS FOR TRAINING NEURAL NETWORKS

Algorithm 3.2 BFGS Method
Require: " and kmax
Initialize: wk ∈ ℝd and HBFGSk = I.
1: k← 1
2: Calculate ∇E(wk)
3: while ‖E(wk)‖ > " and k < kmax do
4: gk ← −HBFGSk ∇E(wk)
5: Determine �k by line search
6: vk+1 ← �kgk
7: wk+1 ← wk + vk+1
8: Calculate ∇E(wk+1)
9: Update HBFGSk+1 using (3.26)
10: k← k + 1
11: end while

is expensive. In the limited memory version, the Hessian matrix is defined by recursively applying m
number of BFGS updates using only the last m number of curvature pairs {sk, yk} as

HBFGSk = (VTk−1…VTk−m) H
0
k (Vk−m…Vk−m)

+ 1
yTk−msk−m

(VTk−1…VTk−m+1) sk−ms
T
k−m (Vk−m+1…Vk−m+1)

+ 1
yTk−m+1sk−m+1

(VTk−1…VTk−m+2) sk−m+1s
T
k−m+1 (Vk−m+2…Vk−m+2)

⋮

+ 1
yTk−1sk−1

sk−1sTk−1 (3.30)

As a result, the computational cost is significantly reduced and the storage cost is down to O(md) where
d is the number of parameters and m is the memory size. The search direction gk = −HBFGSk ∇E(wk)
is effectively implemented using the two-loop recursion as shown in Appendix A.1.

3.2 Nesterov’s Acceleration

Nesterov acceleration is an extension of momentum that involves calculating the decaying moving
average of the gradients of projected positions in the search space rather than the actual positions
themselves. This has the effect of harnessing the accelerating benefits of momentum whilst allowing the
search to slow down when approaching the optima and reduce the likelihood of missing or overshooting
it. The Nesterov’s acceleration was introduced by Yuri Nesterov in [20] in order to speed up the
convergence of gradient descent method. [19] popularized the Nesterov’s acceleration in training neural
networks. The Nesterov’s Accelerated Gradient (NAG) achieves a global convergence rate of O(1∕k2)
versus the O(1∕k) of the gradient descent method. The NAG update can is given as

vk+1 = �vk − �k∇E(wk + �vk) (3.31)

wk+1 = wk + vk+1 (3.32)

19

CHAPTER 3. QUASI-NEWTON METHODS FOR TRAINING NEURAL NETWORKS

Intuitively, the Nesterov’s acceleration can be thought of as a modification to the momentum
method to overcome overshooting the minima. It explores points near the current iterate got from the
gradient descent-type algorithm, and chooses larger and larger exploratory steps (as governed by the
increasing size of the momentum term). But despite this exploration, the Nesterov’s acceleration does
not diverge i.e. even if a particular iteration overshoots and moves far from the optimum, it will get
back close to the optimum after a few more iterations [30].

In the following section, we shall discuss the second-order methods that apply the concept of
Nesterov’s acceleration in quasi-Newton updates.

3.3 Accelerated Quasi-Newton Methods

3.3.1 The NAQ Method

Several modifications have been proposed to the quasi-Newton method to obtain stronger convergence.
The Nesterov’s Accelerated Quasi-Newton (NAQ) [31] method achieves faster convergence compared
to the standard BFGS quasi-Newton methods by quadratic approximation of the objective function
at wk + �vk and by incorporating the Nesterov’s accelerated gradient ∇E(wk + �vk) in its Hessian
update. The derivation of NAQ is briefly discussed as follows.

Let d be the vector d = w − (

wk + �vk
). The quadratic approximation of the objective function at

wk + �vk is defined as,

E(w) ≃ E(wk + �vk) + ∇E(wk + �vk)TΔw +
1
2
dT∇2E(wk + �vk)d. (3.33)

The minimizer of this quadratic function is explicitly given by

d = −∇2E
(

wk + �vk
)−1∇E

(

wk + �vk
)

. (3.34)

Therefore the new iterate is defined as

wk+1 =
(

wk + �vk
)

− ∇2E
(

wk + �vk
)−1∇E

(

wk + �vk
)

. (3.35)

This iteration can be considered as Newton method with the momentum term �vk. The inverse of
Hessian ∇2E(wk + �vk) is approximated by the matrix HNAQk+1 using the following update equation,

HNAQk+1 =
(

I −
skyTk
yTksk

)

HNAQk

(

I −
yksTk
yTksk

)

+
sksTk
yTksk

, (3.36)

where
sk = wk+1 − (wk + �vk) and yk = ∇E(wk+1) − ∇E(wk + �vk). (3.37)

(3.36) is derived from the secant condition (3.9) and the rank-2 updating formula [31]. It is proved
that the Hessian matrix HNAQk+1 updated by (3.36) is a positive definite symmetric matrix given HNAQk is
positive definite and HNAQ0 is initialized to identity matrix [31]. Therefore, the update vector of NAQ
can be written as:

vk+1 = �vk + �kgk, (3.38)

20

CHAPTER 3. QUASI-NEWTON METHODS FOR TRAINING NEURAL NETWORKS

where gk = −HNAQk ∇E(wk + �vk) is the search direction. The NAQ algorithm is given in Algorithm
3.3. Note that the gradient is computed twice in one iteration. This increases the computational cost
compared to the BFGS quasi-Newton method. However, due to acceleration by the momentum and
Nesterov’s gradient term, NAQ is faster in convergence compared to BFGS.

3.3.2 Limited Memory NAQ

Similar to the LBFGS method, LNAQ [32] is the limited memory variant of NAQ that uses the
last m curvature pairs {sk, yk}. In the limited-memory form note that the curvature pairs that are
used incorporate the momemtum and Nesterov’s accelerated gradient term, thus accelerating LBFGS.
Implementation of LNAQ algorithm can be realized by omitting steps 4 and 9 of Algorithm 3.3 and
determining the search direction gk using the two-loop recursion shown in Appendix A.1. The last m
vectors of sk and yk are stored and used in the direction update.
Algorithm 3.3 NAQ Method
Require: 0 < � < 1, " and kmax
Initialize: wk ∈ ℝd , Hk = I and vk = 0.
1: k← 1
2: while ‖E(wk)‖ > " and k < kmax do
3: Calculate ∇E(wk + �vk)
4: gk ← −HNAQk ∇E(wk + �vk)
5: Determine �k by line search
6: vk+1 ← �vk + �kgk
7: wk+1 ← wk + vk+1
8: Calculate ∇E(wk+1)
9: Update HNAQk using (3.36)
10: k← k + 1
11: end while

3.3.3 The MoQ Method

The Momentum quasi-Newton (MoQ) method [33] is realized by approximating the Nesterov’s accel-
erated gradient vector as a linear combination of the gradients at the current and previous iterates, thus
resulting in computing only one gradient per iteration. MoQ approximates the error function E(w)
by assuming that the function is approximately quadratic in the neighborhood of wk + �vk. Thus the
Nesterov’s gradient term can be approximated as,

∇E(wk + �vk) ≃ ∇E(wk) + �∇E(vk). (3.39)
Furthermore, since vk = wk − wk−1, (3.39) can be rewritten as

∇E(wk + �vk) ≃ ∇E(wk) + �∇E(wk − wk−1)

≃ (1 + �)∇E(wk) − �∇E(wk−1). (3.40)
From (3.39) and (3.40), it is confirmed that Nesterov’s accelerated gradient can be approximated as

a weighted linear combination of ∇E(wk) and ∇E(wk−1) with a momentum coefficient �. Therefore,

21

CHAPTER 3. QUASI-NEWTON METHODS FOR TRAINING NEURAL NETWORKS

MoQ can be regarded as a method accelerating the BFGS method using the momentum term. The
update vector of MoQ is given as

vk+1 = �kvk + �kgk, (3.41)
where gk is the search direction given by

gk = H
MoQ
k ∇E(wk + �kvk). (3.42)

From (3.40), the search direction can be approximated as

gk = H
MoQ
k [(1 + �k)∇E(wk) − �k∇E(wk−1)]. (3.43)

where HMoQk is updated by,

HMoQk+1 =
(

I −
skŷTk
ŷTksk

)

HMoQk

(

I −
ŷksTk
ŷTksk

)

+
sksTk
ŷTksk

, (3.44)

with the curvature information pair {sk, ŷk} as

sk = wk+1 − (wk + �vk) = wk+1 − (1 + �)wk + �wk−1, (3.45)

ŷk = ∇E(wk+1) − (1 + �)∇E(wk) + �∇E(wk−1). (3.46)
The algorithm of MoQ is as shown in Algorithm 3.4.
Algorithm 3.4 MoQ Method
Require: 0 < � < 1, " and kmax
Initialize: wk ∈ ℝd , Hk = I and vk = 0.
1: k← 1
2: Calculate ∇E(wk)
3: while ‖E(wk)‖ > " and k < kmax do
4: gk ← −HMoQk [(1 + �k)∇E(wk) − �k∇E(wk−1)]
5: Determine �k by line search
6: vk+1 ← �vk + �kgk
7: wk+1 ← wk + vk+1
8: Store ∇E(wk) and calculate ∇E(wk+1)
9: Update HMoQk using (3.44)
10: k← k + 1
11: end while

3.3.4 Limited Memory MoQ

Similar to the LBFGS and LNAQ methods, LMoQ [28] is the limited memory variant of the MoQ
that uses the last m curvature pairs {sk, ŷk}. Implementation of LNAQ algorithm can be realized by
omitting steps 4 and 9 of Algorithm 3.4. and determining the search direction gk using the two-loop
recursion shown in Appendix A.1.

22

CHAPTER 3. QUASI-NEWTON METHODS FOR TRAINING NEURAL NETWORKS

3.4 Simulation Examples

Now that we have discussed some of the commonly used first and second-order quasi-Newton methods,
we shall discuss the implementation details and their performance evaluation when used for training
neural networks. We conduct a performance evaluation of the methods discussed above on a set of
non-convex function approximation problems and electronic circuit and design problems trained in
full batch. The simulations are performed on the Tensorflow framework. The first-order AdaGrad,
RMSProp, Adam methods are called using the Tensorflow’s built-in optimizer implementations. The
hyper-parameters of AdaGrad, RMSProp and Adam are set to their default values. The BFGS method
is implemented in the Scipy library and used in Tensorflow v1.x through the ScipyOptimizerInterface
class. Similarly we implemented NAQ and MoQ methods in the Scipy library and are called in
Tensorflow v1.x using the ScipyOptimizerInterface class. In order to guarantee numerical stability and
better convergence, an additional �̂ksk term was added to yk [27]. Thus, the vector yk in the modified
method is given as

yk = yk + �̂ksk. (3.47)
where �k is defined as

�̂k = ! ∥ ∇E(wk) ∥ +max{−�Tk sk∕∥ sk ∥
2, 0}, (3.48)

{

! = 2 if ∥ ∇E(wk) ∥2> 10−2,

! = 100 if ∥ ∇E(wk) ∥2< 10−2.
(3.49)

In case of the NAQ and MoQ methods, wk is replaced by wk + �vk and the corresponding MoQ
approximation.

We begin with evaluating the full memory BFGS and NAQmethod in comparison to first-order methods.
It was observed that in examples considered for full memory implementaion, the linesearch method
failed to optimize. Hence, we used an explicit formula for determining the stepsize �k [27].

�k = −
�∇E(wk)Tgk

‖gk‖2Qk
, (3.50)

where
‖gk‖2Qk =

√

gTkQkgk. (3.51)
Qk is determined by Qk = LI where L is the Lipschitz constant of the gradient. L is chosen to be
L = 100‖yk‖∕‖sk‖. In case of the NAQ method, wk in (3.50) is replaced by wk + �vk. The BFGS
and NAQ methods implementing this stepsize is denoted as mBFGS and mNAQ respectively.

3.4.1 Sinusoidal function approximation problem

The function approximation problem under consideration is given as

f (a, x, b) = 1 + (x + 2x2)sin(−ax2 + b), |x| ≤ 4. (3.52)

Consider the case where a = −1 and b = 0. Thus, the function reduces to a single input function
in x given by f (x) = 1 + (x + 2x2)sin(−x2). The training samples are generated with an interval of
0.02 while the test samples are generated by random sampling in the range x ∈ [−4, 4). Each element

23

CHAPTER 3. QUASI-NEWTON METHODS FOR TRAINING NEURAL NETWORKS

Table 3.1: Summary of simulation results of function approximation problem.
Algorithm � E(w)(×10−3) Time Iteration Etest(w)(×10−3)Ave/Best/Worst (s) count Ave/Best/Worst
AdaGrad - 59.8 / 58.6 / 60.2 40 100,000 59.03 / 57.69 / 59.48
RMSprop - 3.34 / 0.564 / 7.89 41 100,000 3.35 / 0.409 / 8.16
Adam - 4.15 / 0.324 / 14.3 42 100,000 4.14 / 0.359 / 14.53
BFGS - 15.14 / 0.650 / 31.80 4.9 3,204 15.14 / 0.650 / 30.66
mBFGS - 5.24 / 0.194 / 17.8 58 31,370 5.26 / 0.233 / 17.80

0.8 1.94 / 0.307 / 6.33 23 9,006 1.94 / 0.307 / 6.33
mNAQ 0.85 0.974 / 0.307 / 5.00 19 7,549 0.980 / 0.315 / 5.00

0.9 1.53 / 0.194 / 13.8 15 5,931 1.53 / 0.194 / 13.80
0.95 1.30 / 0.195 / 6.31 11 4,461 1.30 / 0.233 / 6.31

of the input and desired outputs of the training and test data are normalized in the range[−1, 1]. The
training and test set consists of 400 and 10000 samples respectively. The number of hidden neurons
used is 7. Thus, the neural network structure is given as 1-7-1 with sigmoid activation function. The
maximum number of iterations kmax is chosen to be kmax = 100, 000 and the terminate condition is
set to � = 1.0 × 10−6. The parameter � is chosen to be � = 10−3. We conduct 15 independent and
the summary of the results is presented in Table 3.1. NAQ failed to determine a suitable step size

Figure 3.1: The average training errors vs iteration count

and hence terminated much earlier without converging. Thus, the corresponding results are omitted
from the table. The results indicate that the second-order methods mBFGS and mNAQ converge faster
with smaller errors compared to the first-order algorithms. On comparing the second-order methods,
mBFGS results are comparable with mNAQ. However, it is 12 times slower and takes almost 9.9
times more number of epochs to converge (Figure 3.1). The mNAQ algorithm results in 5-7 times
smaller error rates compared to BFGS. On comparing the results of mNAQ with different values of the
momentum term, � = 0.95 is the fastest with least number of average epochs while 0.85 has the least

24

CHAPTER 3. QUASI-NEWTON METHODS FOR TRAINING NEURAL NETWORKS

average training error. Figure 3.2 illustrates the output of the function under consideration versus the
output of the trained neural network using mBFGS and mNAQ with a momentum of � = 0.85. The
output of the neural network trained with mNAQ is in close approximation with the original function
output, confirming its accuracy.

Figure 3.2: Comparison of network models of mBFGS and mNAQ vs original test data

3.4.2 Levy function approximation problem

Next we evaluate the limited memory quasi-Newton methods on the Levy function approximation
problem which is defined in (3.53).

f (x1… xn) =
�
n

{

n−1
∑

i=1
[(xi − 1)2(1 + 10 sin

2(�xi+1))]

+ 10 sin2(�x1) + (xn − 1)2
}

, xi ∈ [−4, 4],∀i. (3.53)
A feedforward neural network with one hidden layer of 50 hidden neurons with sigmoid activation
function is used. Therefore the neural network structure is 5 − 50 − 1. The number of parameters
is d = 351. Mean squared errors function was used and the maximum number of iteration is set to
kmax = 10000, terminate condition � = 10−6 and limited memory size m = 16. The step size of
the limited memory quasi-Newton methods are determined by applying backtracking line search that
satisfies the Armijo’s condition as given in equation (3.4.2).

E(wk + �kĝk) ≤ E(wk) + ��k∇E(wk)Tĝk for LBFGS,

E(wk + �vk + �kĝk) ≤ E(wk + �vk) + ��k∇E(wk + �vk)Tĝk for LNAQ ∕ LMoQ,

(3.54)
where 0 < � < 1 and default value is � = 0.001.

Also, we evaluate the performance with an adaptive momentum scheme [28] where the �k value is
updated using

�k = �k(1 − �k)∕(�k2 + �k+1), (3.55)

25

CHAPTER 3. QUASI-NEWTON METHODS FOR TRAINING NEURAL NETWORKS

Table 3.2: Summary of results on the Levy function approximation problem, averaged over 50 trials.
Method E(w) epochs fev gev time(s)
L-BFGS 0.000091 10000 28398 10001 81.95
L-NAQ 0.000025 9927 20848 19854 95.21
L-MoQ 0.000022 9961 20918 9962 73.73

where �k+1 is obtained by solving (3.56) with �0 = 1 and = 10−5.

�k+1
2 = (1 + �k+1)�k2 + �k+1. (3.56)

Table 3.2 and Figure 3.3 show the average results over 50 independent trials. The number of function
and gradient evaluations are denoted as fev and gev, respectively. From the error vs. iterations plot,
we can confirm that the L-MoQ method is a good approximation to L-NAQ since they are in close
approximation to each other. However from the error vs. time plot it is clear that L-MoQ converges
faster compared to L-NAQ, which is due to the computation of only one gradient per iteration, similar
to that of the L-BFGS method. Thus L-MoQ has fewer gradient evaluations gev too, and maintains the
same computational cost of L-BFGS i.e., nd + 4md + 2d + �nd and storage cost of (2m + 1)d. But
due to the acceleration effect of the momentum term, L-MoQ converges faster than L-BFGS.

Figure 3.3: Results on the Levy function approximation problem, averaged over 50 trials.

3.4.3 Microstrip low pass filter modeling problem

The performance of the common first-order and second-order methods are evaluated on a large mi-
crowave circuit problem to model a microstrip low pass filter (LPF) [27]. The dielectric constant and

26

CHAPTER 3. QUASI-NEWTON METHODS FOR TRAINING NEURAL NETWORKS

Figure 3.4: Training data set of microstrip lowpass filter (LPF).

height of the substrate of the LPF are 9.3 and 1mm, respectively. The inputs to the neural network are
the length D and frequency f . The outputs are the magnitudes of the S-parameters |S11| and |S21|.The
frequency range is 0.1 to 4.5 GHz. For the training and test data, length D ranges between 12-20 mm
and 13-19 mm respectively at intervals of 2mm. Each interval contains 221 samples. The training
set comprises of 1105 samples and test set comprises 884 samples. The training and test data were
generated using Sonnet [34]. The number of hidden neurons used is 45. Figure 3.4 shows the training
data of the microstrip low pass filter.

Table 3.3: Summary of simulation results of microstrip low-pass filter (LPF).
Algorithm � E(w)(×10−3) Time Iteration Etest(w)(×10−3)

Ave/Best/Worst (s) count Ave/Best/Worst
AdaGrad - 26.6 / 26.4 / 26.7 112 100,000 22.4 / 22.3 / 22.5
RMSprop - 2.99 / 2.44 / 4.07 113 100,000 7.00 / 1.88 / 36.0
Adam - 4.63 / 3.67 / 5.60 137 100,000 37.0 / 3.41 / 212.5
mBFGS - 1.04 / 0.834 / 1.46 493 81,457 1.01 / 0.529 / 3.52

0.8 0.93 / 0.827 / 1.37 303 38,470 0.744 / 0.534 / 1.07
mNAQ 0.85 1.02 / 0.756 / 1.62 314 39,678 7.32 / 5.75 / 87.8

0.9 1.00 / 0.716 / 1.46 242 30,619 0.842 / 0.558 / 1.87
0.95 1.24 / 0.834 / 1.85 209 26,547 2.08 / 0.600 / 13.7

Table 3.3 shows the summary of simulation results. From the table, it can be observed that the
second-order methods result in lower training errors compared to the first-order algorithms. Figure 3.5
shows the average training error over epochs.

Though the training errors of mBFGS and mNAQ are comparable, mNAQ converges much faster
compared to mBFGS and mNAQ � = 0.8 performs the best. However, it is sometimes the case where
inspite of the training and test erros being low, the trained neural network predicted output may not be
in close approximation to the actual expected response. Thus, we verify the goodness of the mNAQ

27

CHAPTER 3. QUASI-NEWTON METHODS FOR TRAINING NEURAL NETWORKS

Figure 3.5: Average training error vs epochs over 15 trials for LPF.

trained neural network model by comparing its output to the true response on a test dataset. Figure 3.6
illustrates the output of the trained neural network with mNAQ � = 0.8 for lengths d = 13mm, 17mm,
15mm and 19mm. The output of the trained model is close to the original test dataset. Thus, we can
conclude that the neural network predicted models can be used effectively in practical models.

Figure 3.6: The comparison of network models of mNAQ vs original test data of LPF.

3.4.4 Op-Amp circuit design optimization problem

Operational amplifiers are one of the most commonly used circuits. However, determining theMOSFET
channel width and length is a tedious process and usually determined by the designer’s experience
followed by repetitive tuning, simulations and redesigning. In this example, we consider a two-stage,
Miller compensated op-amp [35] and present the results of determining the transistor sizing using

28

CHAPTER 3. QUASI-NEWTON METHODS FOR TRAINING NEURAL NETWORKS

Figure 3.7: Two-Stage Op-Amp Schematic

neural networks [29]. The schematic of the op-amp under consideration is shown in Figure 3.8. The
circuit consists of eight MOS transistors M1 to M8. M8 and M5 form a current mirror to supply
the input differential pair M1-M2 with bias current Iref . M1-M2 is actively loaded with the current
mirror formed by M3-M4. The capacitor Cc is used for frequency compensation. For the generation of

Table 3.4: Design Specification
Parameter Value

Supply Voltage ±2.5V
�nCox 160�A∕V 2

�pCox 40�A∕V 2

Unity GBW > 1MHz
Open Loop Gain Ao(dB) >50 dB

Phase Margin >60 deg

training and test dataset, a similar strategy to [36] was adopted. Channel length (L) was fixed to 1�m
to avoid short channel effects. Based on the desired specifications shown in Table 3.4, an initial set of
channel width (W) were chosen. 5% of the width in each case was varied with a uniform distribution
i.e with 10 points in the range [0.95Wn, 1.05Wn]. Further, we setW1 = W2 andW3 = W4 to enforce
symmetry. Iref was varied in the range {60 �A - 100 �A} and load capacitance CL = {2pF, 10pF}.
Using standard design equations, the parameters DC open loop gain (Ao) in dB, unity gain bandwidth
(GBW), slew rate (SR), phase margin (PM) and power dissipation (Pdiss) were calculated. The neural
network structure used was 7-4-18-10-9 with sigmoid activation functions. The input to the neural
network comprised of {Ao, GBW, SR, PM, Pdiss, Iref , CL}. 347 samples normalized in the range [0,1]
were generated using a similar strategy to [36]. The terminate condition was set to 10−2. The neural
network output comprised of {W1,W2,W3,W4,W5,W6,W7,W8, Cc}. As seen from the previous EDA
example, the choice of the momentum term � is a hyperparameter that requires tuning. Hence we
evaluate the performance with the adaptive momentum scheme as discussed in the example in section

29

CHAPTER 3. QUASI-NEWTON METHODS FOR TRAINING NEURAL NETWORKS

Figure 3.8: Train loss over 200 epochs (best case)

3.4.2. Figure 3.8 shows the training loss over 200 epochs for the best case trial. Table 3.5 shows the
average, best and worst case train and test errors over 30 independent trials. Further the convergence
rate (CR) and the average number of epochs required for convergence is also tabulated in Table 3.5.
From the table, it can be observed that the performance of mNAQ with fixed values varies for different
values of the momentum term, thus confirming the need for an adaptive momentum scheme. However,
it is evident from Figure 3.8 that the second-order methods have faster convergence compared to the
first-order methods. The result also confirms that the adaptive momentum amNAQ method converges
to the desired value much faster compared to the other algorithms with a good convergence rate and
low test error. From the results obtained, it can be confirmed that the second-order amNAQ can be
efficiently used in solving transistor sizing problems.

Table 3.5: Summary of the results over 30 trials
Algorithm Etr(w)(×10−3) CR Avg Ete(w)(×10−3)

Ave/Best/Worst (%) epochs Ave/Best/Worst
SGD 66.4/43.2/113.3 - 200 68.4/45.9/118.6

AdaGrad 35.1/26.9/53.7 - 200 36.8/29.5/57.5
Adam 11.8/11.3/16.4 - 200 13.6/13.1/17.9
BFGS 11.4/11.3/11.5 - 200 13.2/13.1/13.3
� = 0.8 10.0/9.9/11.2 90 161 11.9/11.6/13.0

mN
AQ � = 0.85 10.0/9.9/11.1 93.3 156 11.9/11.6/12.9

� = 0.9 9.9/9.9/10.5 93.3 156 11.8/11.6/12.4
� = 0.95 10.3/9.9/11.3 63.3 178 12.1/11.5/13.2
amNAQ 9.9/9.9/11.3 96.7 146 11.8/11.6/13.1

30

4

Accelerated Stochastic Quasi-Newton Methods

Neural networks have shown to be effective in innumerous real-world applications. There are several
applications that require large neural network models with massive amounts of training data to achieve
good accuracies and low errors. It is expected that the neural network training imposes relatively lower
computational and memory demands, in which case a full-batch approach (as in Chapter 3) is not
suitable. Thus, in such large scale optimization problems, a stochastic / mini-batch approach is more
desirable. Thus in this chapter we introduce stochastic extentions of the Nesterov’s accelerated and
momentum accelerated quasi-Newton method. This chapter is based on the works published in [37,38].

4.1 Introduction

With the growing demand in machine learning for large scale applications, it is quite common to
encounter optimization problems with millions of training examples and millions of parameters to train
upon. In order to cope with the high demands of computation resources and time imposed by such
models, several stochastic algorithms have been developed. Stochastic algorithms use a small subset
of data (mini-batch) in the training at each iteration. These methods are particularly of relevance in
examples of a continuous stream of data, where the partial data is to be modeled as it arrives. Since the
stochastic or online methods operate on small subsamples of the data and its gradients, they significantly
reduce the computational and memory requirements. However, conventional optimization methods
are not well equipped to deal with the challenges that arise in large scale stochastic optimization. The
non-linearity, scale and stochasticity inherent in the neural network models give rise to highly complex
optimization problems and this has stimulated a wide stream of algorithmic research.

4.2 Background

Several works have been devoted to stochastic first-order methods such as stochastic gradient descent
(SGD) [10, 11] and its variance-reduced forms [5, 9, 39], AdaGrad [12], RMSprop [21] and Adam [22].
First order methods are popular due to its simplicity and optimal complexity. However, incorporating
the second-order curvature information have shown to improve convergence. But one of the major
drawbacks in second-order methods is its need for high computational and memory resources. Thus
several approximations have been proposed under Newton [40, 41] and quasi-Newton [42] methods in
order to make use of the second-order information while keeping the computational load minimal.

31

CHAPTER 4. ACCELERATED STOCHASTIC QUASI-NEWTON METHODS

Unlike the first-order methods, getting quasi-Newton methods to work in a stochastic setting is
challenging and has been an active area of research [43]. The oBFGS method [44] is one of the early
stable stochastic quasi-Newton methods, in which the gradients are computed twice using the same
sub-sample, to ensure stability and scalability. Recently there has been a surge of interest in designing
efficient stochastic second-order variants which are better suited for large scale problems. [45] proposed
a regularized stochastic BFGS method (RES) that modifies the proximity condition of BFGS. [46]
further analyzed the global convergence properties of stochastic BFGS and proposed an online L-BFGS
method. [47] proposed a stochastic limited memory BFGS (SQN) through sub-sampled Hessian vector
products. [48] proposed a general framework for stochastic quasi-Newton methods that assume noisy
gradient information through first-order oracle (SFO) and extended it to a stochastic damped L-BFGS
method (SdLBFGS). This was further modified in [49] by reinitializing the Hessian matrix at each
iteration to improve convergence and normalizing the search direction to improve stability. There
are also several other studies on stochastic quasi-Newton methods with variance reduction [7, 50, 51],
sub-sampling [41,52] and block updates [53]. Most of these methods have been proposed for solving
convex optimization problems, but training of neural networks for non-convex problems have not been
mentioned in their scopes. The focus of this chapter is on training neural networks for non-convex
problems with methods similar to that of the oBFGS in [44] and RES [45,46], as they are stochastic
extensions of the classical quasi-Newton method. Thus, tht other sophisticated algorithms such as
those in [7, 41, 47–53] are excluded from comparision.

Stochastic BFGS Method (oBFGS)

The online BFGS method proposed by Schraudolph et al in [44] is a fast and scalable stochastic
quasi-Newton method suitable for convex functions. The changes proposed to the BFGS method
in [44] to work well in a stochastic setting are discussed as follows. Usually line search methods for
determing the step size is not suitable for stochastic training. Thus the line search is replaced with a
decay schedule such as

�k = �∕(� + k) ⋅ �0, (4.1)
where �0, � > 0 provided the Hessian matrix is positive definite, thus restricting to convex optimization
problems. Since line search is eliminated, the first parameter update is scaled by a small value. Further,
to improve the performance of oBFGS, the step size is divided by an analytically determined constant c.
An important modification is the computation of yk, the difference of the last two gradients is computed
on the same sub-sample Xk [44, 45] as given below,

yk = ∇E(wk+1, Xk) − ∇E(wk, Xk). (4.2)

This however doubles the cost of gradient computation per iteration but is shown to outperform natural
gradient descent for all batch sizes [44]. The oBFGS algorithm is as shown in Algorithm 4.1.

Stochastic Limited Memory BFGS (oLBFGS)

[44] further extends the oBFGS method to limited memory form by determining the search direction
gk using the two-loop recursion (Appendix A.1) and storing the curvature information pair instead of
the update in step 11 of Algorithm 4.1. The Hessian update is omitted and instead the last m curvature

32

CHAPTER 4. ACCELERATED STOCHASTIC QUASI-NEWTON METHODS

Algorithm 4.1 Stochastic BFGS Method - oBFGS
Require: minibatch Xk, kmax and � ≥ 0,
Initialize: wk ∈ ℝd , Hk = �I and vk = 0
1: k← 1
2: while k < kmax do
3: ∇E1 ← ∇E(wk, Xk)
4: gk ← −HBFGSk ∇E(wk, Xk)
5: Determine �k using (4.1)
6: vk+1 ← �kgk
7: wk+1 ← wk + vk+1
8: ∇E2 ← ∇E(wk+1, Xk)
9: sk ← wk+1 − wk
10: yk ← ∇E2 − ∇E1 + �sk
11: Update HBFGSk using (3.26)
12: k← k + 1
13: end while

pairs sk and yk are stored. This brings down the computation complexity to 2bd + 6md where b is the
batch size, d is the number of parameters, and m is the memory size. To improve the performance by
averaging sampling noise, step 7 of Algorithm A.1 is replaced by (4.3) where �k and k correspond to
the curvature information pair sk and yk.

�k =

⎧

⎪

⎨

⎪

⎩

��k if k = 1,

�k
min(k,m)

min(k,m)
∑

i=1

�Tk−ik−i
Tk−ik−i

otherwise.
(4.3)

4.3 Stochastic BFGS with Nesterov’s Acceleration

4.3.1 Stochastic NAQ Method

The oBFGS method proposed in [44] computes the gradient of a sub-sample minibatchXk twice in one
iteration. This is comparable with the inherent nature of NAQ which also computes the gradient twice
in one iteration. Thus by applying suitable modifications to the original NAQ algorithm, we achieve a
stochastic version of the Nesterov’s Accelerated Quasi-Newton method. The proposed modifications
for a stochastic NAQ method is discussed below in its full and limited memory forms [37]. The
NAQ algorithm computes two gradients, ∇E(wk + �vk) and ∇E(wk+1) to calculate yk as shown in
(3.36). On the other hand, the oBFGS method proposed in [44] computes the gradient ∇E(wk, Xk)
and ∇E(wk+1, Xk) to calculate yk as shown in (4.2). Therefore, oNAQ can be realised to calculate
∇E(wk + �vk, Xk) and ∇E(wk+1, Xk) as shown in Algorithm 4.2. Thus in oNAQ, the yk vector is
given by (4.4) where �sk is used to guarantee numerical stability [27, 54, 55].

yk = ∇E(wk+1, Xk) − ∇E(wk + �vk, Xk) + �sk, (4.4)

Further, unlike in full batch methods, the updates in stochastic methods have high variance resulting
in the objective function to fluctuate heavily. This is due to the updates being performed based on small
sub-samples of data. This can be seen more prominently in case of the limited memory version where

33

CHAPTER 4. ACCELERATED STOCHASTIC QUASI-NEWTON METHODS

Algorithm 4.2 Stochastic NAQ Method - oNAQ
Require: minibatch Xk, 0 < � < 1 and kmax
Initialize: wk ∈ ℝd , HNAQk = �I and vk = 0
1: k← 1
2: while k < kmax do
3: ∇E1 ← ∇E(wk + �vk, Xk)
4: ĝk ← −HNAQk ∇E(wk + �vk, Xk)
5: ĝk = ĝk∕‖ĝk‖2
6: Determine �k using (4.6)
7: vk+1 ← �vk + �kĝk
8: wk+1 ← wk + vk+1
9: ∇E2 ← ∇E(wk+1, Xk)
10: sk ← wk+1 − (wk + �vk)
11: yk ← ∇E2 − ∇E1 + �sk
12: Update HNAQk using (3.36)
13: k← k + 1
14: end while

the updates are based only on m recent curvature pairs. Thus in order to improve the stability of the
algorithm, we introduce direction normalization as

ĝk =
ĝk

‖ĝk‖2
, (4.5)

where ‖ĝk‖2 is the l2 norm of the search direction ĝk. Normalizing the search direction at each iteration
ensures that the algorithm does not move too far away from the current objective [49]. Figure 4.1
illustrates the effect of direction normalization on oBFGS and the proposed oNAQ method. The solid
lines indicate the moving average. As seen from the figure, direction normalization improves the
performance of both oBFGS and oNAQ. Therefore, in this study we include direction normalization
for oBFGS also.

Figure 4.1: Effect of direction normalization on 8x8 MNIST with b = 64 and � = 0.8.

34

CHAPTER 4. ACCELERATED STOCHASTIC QUASI-NEWTON METHODS

The next proposed modification is with respect to the step size. In full batch methods, the step size
or the learning rate is usually determined by line search methods satisfying either Armijo or Wolfe
conditions. However, in stochastic methods, line searches are not quite effective since search conditions
apply global validity. This cannot be assumed when using small local sub-samples [44]. Several studies
show that line search methods does not necessarily ensure global convergence and have proposed
methods that eliminate line search [27, 54, 55]. Moreover, determining step size using line search
methods involves additional function computations until the search conditions such as the Armijo or
Wolfe condition is satisfied. Hence we determine the step size using a simple learning rate schedule.
Common learning rate schedules are polynomial decays and exponential decay functions. In this study,
we determine the step size using a polynomial decay schedule [56]

�k =
�0
√

k
, (4.6)

where �0 is usually set to 1. If the step size is too large, which is the case in the initial iterations, the
learning can become unstable. This is stabilized by direction normalization. A comparison of common
learning rate schedules are illustrated in Figure 4.2

Figure 4.2: Comparison of �k schedules on 8x8 MNIST with b = 64 and � = 0.8.

The proposed stochastic NAQ algorithm is shown in Algorithm 4.2. Note that the gradient is
computed twice in one iteration, thus making the computational cost same as that of the stochastic
BFGS (oBFGS) proposed in [44].

4.3.2 Stochastic Limited-Memory NAQ (oLNAQ)

Stochastic LNAQ can be realized by making modifications to Algorithm 4.2 similar to LNAQ. The
search direction ĝk in step 4 is determined by Algorithm A.1. oLNAQ like LNAQ uses the last m
curvature pairs {sk, yk} to estimate the Hessian matrix instead of storing and computing on a dxd
matrix. Therefore, the implementation of oLNAQ does not require initializing or updating the Hessian
matrix. Hence step 12 of Algorithm 4.2 is replaced by storing the last m curvature pairs {sk, yk}.

35

CHAPTER 4. ACCELERATED STOCHASTIC QUASI-NEWTON METHODS

Finally, in order to average out the sampling noise in the last m steps, we replace step 7 of Algorithm
A.1 by (4.3) where �k is sk and k is yk. Note that an additional 2md evaluations are required to
compute (4.3). However the overall computation cost of oLNAQ is much lesser than that of oNAQ and
the same as oLBFGS.

4.3.3 Simulation Results

The performance of the proposed stochastic methods oNAQ and oLNAQ is evaluated on classification
and regression problems. The performance of the classification task is evaluated on a multi-layer neural
network (MLNN) and a simple convolution neural network (CNN). The algorithms oNAQ, oBFGS,
oLNAQ and oLBFGS are implemented in Tensorflow using the ScipyOptimizerInterface class. For a
fair CPU time comparison, we implement the Adam optimzer also using the ScipyOptimizerInterface
class.

Classification Problem

The 28 × 28MNIST dataset [57] is used to illustrate the performance of the proposed algorithm on the
classification task. It was observed that oNAQ and oLNAQ required fewer epochs compared to oBFGS,
oLBFGS, Adam and SGD. In terms of computation time, o(L)BFGS and o(L)NAQ required longer
time compared to the first-order methods. This is due to the Hessian computation and two gradient
calculations per iteration. Further, the oBFGS and oNAQ per iteration time difference compared to
first-order methods is much larger than that of the limited memory algorithms with memory m = 4. It
was observed that for the same time, the second-order methods perform significantly better compared to
the first-order methods, thus confirming that the extra time taken by the second-order methods does not
adversely affect its performance. Thus, the train loss and test accuracy versus time is used to evaluate
the performance of the proposed method.

Results on Multi-Layer Neural Networks

A simple MLNN with two hidden layers is considered. ReLU activation function and softmax cross-
entropy loss function is used. Each layer except the output layer is batch normalized. Due to large
number of parameters, the performace of only the limited memory methods are illustrated below. Figure
4.3 shows the results of oLNAQ on the 28 × 28MNIST dataset for batch size b = 64 and b = 128. The
results indicate that oLNAQ clearly outperforms oLBFGS and SGD for even small batch sizes. On
comparing with Adam, oLNAQ is in close competition with Adam for small batch sizes such as b = 64
and performs better for larger batch sizes such as b = 128.

Results on Convolution Neural Network

The performance of the proposed algorithm is evaluated on a simple convolution neural network (CNN)
with two convolution layers followed by a fully connected layer. Sigmoid activation functions and
softmax cross-entropy error function are used. The CNN architecture comprises of two convolution
layers of 3 and 5 5x5 filters respectively, each followed by 2x2 max pooling layer with stride 2. The
convolution layers are followed by a fully connected layer with 100 hidden neurons. The batch size
b = 128 and limited mem m = 4 is chosen with a parameters size of d = 260, 068. Figure 4.4 shows

36

CHAPTER 4. ACCELERATED STOCHASTIC QUASI-NEWTON METHODS

0 200 400 600 800 1000
Time (s)

10 3

10 2

10 1

100
Tr

ai
n

Lo
ss

oLNAQ(=0.85)
oLBFGS
Adam
SGD

oLNAQ(=0.85)
oLBFGS
Adam
SGD

200 400 600 800 1000
Time (s)

96.0

96.5

97.0

97.5

98.0

Te
st

 A
cc

ur
ac

y

oLNAQ(=0.85)
oLBFGS
Adam
SGD

oLNAQ(=0.85)
oLBFGS
Adam
SGD

0 100 200 300 400
Time (s)

10 3

10 2

10 1

100

Tr
ai

n
Lo

ss

oLNAQ(=0.85)
oLBFGS

Adam
SGD

oLNAQ(=0.85)
oLBFGS

Adam
SGD

0 50 100 150 200 250 300 350 400
Time (s)

92

93

94

95

96

97

98

Te
st

 A
cc

ur
ac

y

SGD
Adam

oLNAQ(=0.85)
oLBFGS

SGD
Adam

oLNAQ(=0.85)
oLBFGS

Figure 4.3: Results on 28 × 28MNIST for b = 64 (top) and b = 128 (bottom).

the results of oLNAQ on the simple CNN. The CNN results show similar performance as that of the
results on multi-layer neural network where oLNAQ outperforms SGD and oBFGS. Comparing with
Adam, oLNAQ is much faster in the first few epochs and becomes closely competitive to Adam as
the number of epochs increases. Calculation of the gradient twice per iteration increases the time per
iteration when compared to the first-order methods. However this is compensated well since the overall
performance of the algorithm is much better compared to Adam and SGD. Also the number of epochs
required to converge to low error and high accuracies is much lesser than the other algorithms. In other
words, the same accuracy or error can be achieved with lesser amount of training data.

Regression Problem

The performance of the proposed stochastic methods on regression problems is illustrated. For this task,
the benchmark white wine quality prediction task [58] is chosen and evaluated on a multi-layer neural
network with 2 hidden layers. The task is to predict the quality of the white wine on a scale of 3 to 9
based on 11 physiochemical test values. Sigmoid activation function and mean squared error (MSE)
function is used. Each layer except the output layer is batch normalized. The dataset is z-normalized
to have zero mean and unit variance. The dataset is split in 80-20 % for train and test set. For the
regression problem, oNAQ with smaller values of momemtum � = 0.8 and � = 0.85 show similar
performance as that of oBFGS. Larger values of momentum resulted in better performance. Hence a
value of � = 0.95 is chosen as it showed faster convergence compared to the other methods. Further

37

CHAPTER 4. ACCELERATED STOCHASTIC QUASI-NEWTON METHODS

0 1000 2000 3000 4000
Time (s)

10 1

100

101

Tr
ai

n
Lo

ss
oLNAQ(=0.85)
oLBFGS
Adam
SGD

oLNAQ(=0.85)
oLBFGS
Adam
SGD

0 1000 2000 3000 4000
Time (s)

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

oLNAQ(=0.85)
oLBFGS
Adam
SGD

oLNAQ(=0.85)
oLBFGS
Adam
SGD

Figure 4.4: CNN Results on 28 × 28MNIST with b = 128.

comparing the performance for different batch sizes, it was observed that for smaller batch sizes such as
b = 32, oNAQ is close in performance with Adam and oLNAQ is initially fast and gradually becomes
close to Adam. For bigger batch sizes such as b = 64, oNAQ and oLNAQ are faster in convergence
initially. Over time, oLNAQ continues to result in lower error while oNAQ gradually becomes close to
Adam. Figure 4.5 shows the root mean squared error (RMSE) versus time for batch sizes b = 32 and
b = 64.

0 10 20 30 40 50 60
Time (s)

0.76

0.78

0.80

0.82

0.84

0.86

RM
SE

SGD
oNAQ(=0.95)
oBFGS

Adam
oLNAQ(=0.95)
oLBFGS

SGD
oNAQ(=0.95)
oBFGS

Adam
oLNAQ(=0.95)
oLBFGS

0 10 20 30 40 50 60
Time (s)

0.76

0.78

0.80

0.82

0.84

0.86

RM
SE

SGD
oNAQ(=0.95)
oBFGS

Adam
oLNAQ(=0.95)
oLBFGS

SGD
oNAQ(=0.95)
oBFGS

Adam
oLNAQ(=0.95)
oLBFGS

Figure 4.5: Results of Wine Quality Dataset for b = 32 (left) and b = 64 (right).

4.4 Stochastic BFGS with Momentum Acceleration

4.4.1 Stochastic MoQ Method

Both o(L)BFGS and o(L)NAQ methods compute the gradient twice per iteration. However from the
results presented above, it was clear that the performance in terms of computaion time was not adversely
affected. However, the momentum accelerated quasi-Newton method (MoQ) [33] showed that the
Nesterov’s accelerated gradient in NAQ can be approximated as a linear combination of past gradients
as shown below.

∇E(wk + �vk) ≈ (1 + �)∇E(wk) − �∇E(wk−1) (4.7)

38

CHAPTER 4. ACCELERATED STOCHASTIC QUASI-NEWTON METHODS

Extending this approximation to o(L)NAQ, we further propose a stochastic momentum accelerated
quasi-Newton (oMoQ) method. The algorithm is as shown in Algorithm 4.3. The Hessian HMoQk is
updated by as

HMoQk+1 = (I − �ksky
T
k)H

MoQ
k (I − �kyksTk) + �ksks

T
k , (4.8)

where
sk = wk+1 − (wk + �vk) = wk+1 − (1 + �)wk + �wk−1, (4.9)

yk = ∇E(wk+1,Xk+1) − (1 + �)∇E(wk,Xk) + �∇E(wk−1,Xk−1). (4.10)
Note that unlike o(L)BFGS and o(L)NAQ, the proposed method computes only one gradient per

iteration, while the gradient computed with respect to the previous batch Xk is stored in memory. The
computation cost is thus reduced by bd, where b is the batch size and d is the number of parameters.
From (4.10), we can observe that the curvature information term yk is a computed based on three
mini-batch samples, which could result in increased stochastic sampling noise. Limited memory
oLMoQ is formulated by computing the search direction gk (step 5) using the two-loop recursion
(Appendix A.1).
Algorithm 4.3 Stochastic MoQ Method - oMoQ
Require: learning rate schedule, 0 < � < 1 and kmax
Initialize: wk ∈ ℝd , Hk = �I and vk = 0
1: Calculate ∇E(wk, Xk)
2: while ‖∇E(wk)‖ > � and k < kmax do
3: Determine learning rate �k
4: ∇E1 = (1 + �)∇E(wk, Xk) − �∇E(wk−1, Xk−1)
5: gk ← −HMoQk ∇E1
6: gk = gk∕‖gk‖2
7: vk+1 ← �vk + �kgk
8: wk+1 ← wk + vk+1
9: Store ∇E(wk, Xk)
10: Select mini-batch Xk+1
11: Calculate ∇E2 = ∇E(wk+1, Xk+1)
12: sk ← wk+1 − (wk + �vk)
13: yk ← ∇E2 − ∇E1 + �sk
14: Update HMoQk using (25)
15: end while

4.4.2 MoQ Simulation Results

We illustrate the performance of the proposed stochastic methods oMoQ and oLMoQ the 28 × 28
MNIST dataset on a multi-layer neural network (MLNN), a simple convolution neural network (CNN)
and LeNET-5 architectures. The algorithms oMoQ, oNAQ, oBFGS, oLMoQ, oLNAQ and oLBFGS
are implemented in Tensorflow using the ScipyOptimizerInterface class.

Results on Feedforward Neural Networks

We consider a simple feedforward NN with two hidden layers. ReLU activation function and softmax
cross-entropy loss function is used. Each layer except the output layer is batch normalized. We first

39

CHAPTER 4. ACCELERATED STOCHASTIC QUASI-NEWTON METHODS

Figure 4.6: Feedforward NN results on 8 × 8MNIST with b = 32.

evaluate the performance of the full memory oMoQ, oNAQ and oBFGS using the 8x8 reduced MNIST
dataset [59]. The dataset comprises of 1797 samples which we divide in 75-25 % for training and
testing. The NN architecture is 64− 20− 10− 10 and the number of parameter d = 1620. A batch size
of 32 is chosen, � = 0.8 and m = 10. We terminate the training when the train loss is less than 10−3.
Figure 4.6 shows the results of the full memory algorithms. It was observed that oMoq terminated at 11
epochs, oNAQ at 13 epochs, oBFGS at 100 epochs and Adam at 217 epochs. As seen from the figure,
the computation time of full memory methods are much larger than first-order methods like Adam.
However the number of iterations required to reach the same level of accuracy is much more than that of
oMoQ and oNAQ. Furthermore, for larger networks, the full memory scheme may not prove to have an
advantage over the first-order methods unless implemented using parallel or distributed programming.
To this end, limited memory methods prove to be more efficient. In the following sections, we evaluate
the limited memory methods. However in this example, performance wise, we can observe that the
first-order Adam is slow compared to second-order stochastic methods, and oNAQ and oMoQ exhibit
better performance than oBFGS.

The number of parameter d = 84, 060. The batch size is chosen to be 128, � = 0.85 and limited
memory m = 4. Figure 4.7 shows the results on the feed forward neural network. From the results, it
is clear that unlike the second-order methods, Adam requires more number of iterations to converge.
oLMoQ performs better than oLBFGS as a result of momentum acceleration. Also, oLMoQ takes
lesser time compared to oLBFGS and oLNAQ. Nevertheless, oLNAQ performs the best in this case.

40

CHAPTER 4. ACCELERATED STOCHASTIC QUASI-NEWTON METHODS

Figure 4.7: Feedforward NN results on 28 × 28MNIST with b = 128.

Results on simple two layer Convolution Neural Network

We study the performance of the proposed algorithms on a simple convolution neural network (CNN)
with two convolution layers followed by a fully connected layer. We use sigmoid activation functions
and softmax cross-entropy error function. We evaluate the performances of oLNAQ and oLMoQ using
the 28×28MNIST dataset with a batch size of 128 and � = 0.85 and number of parameters d = 26, 068.
The CNN architecture comprises of two convolution layers of 3 and 5 5x5 filters respectively, each
followed by 2x2 max pooling layer with stride 2. The convolution layers are followed by a fully
connected layer with 100 hidden neurons. Figure 4.8 shows the results on the 2-layer CNN. Both
iteration wise and time wise, oLMoQ performs better than Adam, oLBFGS and oLNAQ. As we can
observe from the figure, the time taken to complete 20 epochs by Adam is much lesser than that of
oLMoQ or oLNAQ. However, it also clear that even if we were to stop the training after 20s, the
performance of oLMoQ is superior to that of Adam.

41

CHAPTER 4. ACCELERATED STOCHASTIC QUASI-NEWTON METHODS

Figure 4.8: Simple 2 layer CNN results on 28 × 28MNIST with b = 128.
Results on LeNET-5

Figure 4.9: The LeNet-5 architecture (Source: Yann LeCun et al. [60])

42

CHAPTER 4. ACCELERATED STOCHASTIC QUASI-NEWTON METHODS

The LeNet-5 architecture [60] consists of two sets of convolutional and average pooling layers,
followed by a flattening convolutional layer, then two fully-connected layers and finally a softmax
classifier. The number of parameter d = 61706, batch size b = 128, mu = 0.85 and m = 4. Figure
4.10 shows the results of time versus test loss and test accuracy; and iteration versus test loss and test
accuracy. From the figure, it is clear that the proposed oLMoQ outperforms oLBFGS, oLNAQ and
Adam. It take relatively lesser time compared of oLBFGS and oLNAQ and is comparable to Adam.

Figure 4.10: LeNET-5 results on 28 × 28MNIST with b = 128.

4.5 Convergence Analysis

Suppose that E ∶ ℝd → ℝ is continuosly differentiable and that d ∈ ℝd , then from Taylor series, the
quadratic model of the objective function at an iterate wk is given as

E(wk + d) ≈ mk(d) ≈ E(wk) + ∇E(wk)Td +
1
2
dT∇2E(wk)d. (4.11)

In order to find the minimizer dk, we equate ∇mk(d) = 0 and thus have
dk = −∇2E(wk)−1∇E(wk) = −B−1k ∇E(wk) . (4.12)

The new iterate wk+1 is given as,
wk+1 = wk − �kB−1k ∇E(wk), (4.13)

and the quadratic model at the new iterate is given as
E(wk+1 + d) ≈ mk+1(d) ≈ E(wk+1) + ∇E(wk+1)Td +

1
2
dTBk+1d , (4.14)

43

CHAPTER 4. ACCELERATED STOCHASTIC QUASI-NEWTON METHODS

where �k is the step length and B−1k = Hk and its consecutive updates B−1k+1 = Hk+1 are symmetric
positive definite matrices satisfying the secant condition. The Nesterov’s acceleration approximates
the quadratic model at wk + �kvk instead of the iterate at wk. Here vk = wk − wk−1 and �k is the
momentum coefficient in the range (0, 1). Thus we have the new iterate wk+1 given as,

wk+1 = wk + �kvk − �kB−1k ∇E(wk + �kvk), (4.15)
= wk + �kvk + �kdk. (4.16)

In order to show that the Nesterov accelerated updates also satisfy the secant condition, we require
that the gradient of mk+1 should match the gradient of the objective function at the last two iterates
(wk + �kvk) and wk+1. In other words, we impose the following two requirements on Bk+1,

∇mk+1|d=0 = ∇E(wk+1 + d)|d=0 = ∇E(wk+1), (4.17)
∇mk+1|d=−�kdk = ∇E(wk+1 + d)|d=−�kdk

= ∇E(wk+1 − �kdk)

= ∇E(wk + �kvk). (4.18)
From (4.14),

∇mk+1(d) = ∇E(wk+1) + Bk+1d. (4.19)
Substituting d = 0 in (4.19), the condition in (4.17) is satisfied. From (4.18) and substituting

d = −�kdk in (4.19), we have
∇E(wk + �kvk) = ∇E(wk+1) − �kBk+1dk. (4.20)

Substituting for �kdk from (4.16) in (4.20), we get
∇E(wk + �kvk) = ∇E(wk+1) − Bk+1(wk+1 − (wk + �kvk)). (4.21)

Also from the MoQ approximation given in 4.7, we have
(1 + �k)∇E(wk) − �k∇E(wk−1) = ∇E(wk+1) − Bk+1(wk+1 − (wk + �kvk)). (4.22)

On rearranging the terms, we have the secant condition
yk = Bk+1sk, (4.23)

where, sk = wk+1 − (wk + �kvk) = �kdk (4.24)
yk = ∇E(wk+1) − ∇E(wk + �kvk) (in case of NAQ) (4.25)
yk = ∇E(wk+1) − (1 + �)∇E(wk) + �k∇E(wk−1) (in case of MoQ) (4.26)

For the ease of convergence analysis, we consider an alternative way of expressing the iterate
update equations. From (4.15) we have,

wk+1 = wk + �kvk − �kHk∇E(wk + �kvk), (4.27)
and

vk+1 = �kvk − �kHk∇E(wk + �kvk). (4.28)

44

CHAPTER 4. ACCELERATED STOCHASTIC QUASI-NEWTON METHODS

Let ak = vk
�k
. From (4.28) and (4.27), we have

ak+1 = �kak −Hk∇E(wk + �k�kak). (4.29)

and
wk+1 = wk + �k�kak − �kHk∇E(wk + �k�kak) (4.30)

wk+1 = wk + �kak+1. (4.31)
Let ŵk = wk + �k�kak. Hence,

ak+1 = �kak −Hk∇E(ŵk+1). (4.32)

and,
ŵk+1 = wk+1 + �k�kak+1 (4.33)

= wk + �kak+1 + �k�kak+1 (4.34)
= ŵk − �k�kak + �kak+1 + �k�kak+1 (4.35)
= ŵk + �kak+1 + �k�k(ak+1 − ak) (4.36)

ŵk+1 = ŵk + �kak+1 + �k�k
[

(� − 1)ak −Hk∇E(ŵk)
] (4.37)

By recursively substituting for ak+1 and akuntil a0 = 0 we have

ŵk+1 = ŵk − �k
k
∑

i=0

(

�k−ik Hi∇E(ŵi)
)

+ �k�k
[

(1 − �k)
k−1
∑

i=0

(

�k−ik Hi∇E(ŵi)
)

−Hk∇E(ŵk)
]

(4.38)

ŵk+1 ≈ ŵk − �kHk∇E(ŵk) + �k�k
[

(1 − �k)Hk−1∇E(ŵk−1) −Hk∇E(ŵk)
]

(4.39)
ŵk+1 ≈ ŵk − �kHk∇E(ŵk) − �k�kHk∇E(ŵk) (4.40)

ŵk+1 ≈ ŵk − (1 + �k)�kHk∇E(ŵk) (4.41)
Assumption 4.5.1. The sequence of iterates wk and ŵk ∀ k = 1, 2, ..., kmax ∈ ℕ remains in the closed
and bounded set
 on which the stochastic objective function is twice continuously differentiable and
has Lipschitz continuous stochastic gradient, i.e., there exists a constant L > 0 such that

‖∇Eb(ŵk+1) − ∇Eb(ŵk)‖ ≤ L‖ŵk+1 − ŵk‖ ∀ ŵk ∈ ℝd , (4.42)

and the mini batch samples Xk are drawn independently and the stochastic (minibatch) gradient
∇Eb(ŵk) = ∇E(ŵk, Xk) is an unbiased estimator of the full gradient for all ŵk, i.e., E[∇E(ŵk, Xk)] ≈
∇E(ŵk)

Assumption 4.5.2. The Hessian matrix Bk = ∇2Eb(ŵk) constructed with mini-batch samples Xk is
bounded and well-defined, .i.e, there exists constants � and L, such that

� ≼ ‖Bk‖ ≼ L ∀ k = 1, 2, ..., kmax ∈ ℕ (4.43)

for all mini-batch samples Xk ⊂ Tr of batch size b.

45

CHAPTER 4. ACCELERATED STOCHASTIC QUASI-NEWTON METHODS

Assumption 4.5.3. There exists a constant 2 such that ∀ ŵk ∈ ℝd and batches Xk ⊂ Tr of size b,

EXk

[

‖∇E(ŵk, Xk)‖2
]

≤ 2 (4.44)
Assumption 4.5.4. The sequence of step size �k selected is nonsummnable but square summable i.e.,

∞
∑

k=0
�k = ∞ and

∞
∑

k=0
�2k ≤∞ (4.45)

Lemma 4.5.1. Suppose Assumptions 4.5.1 - 4.5.2 hold, there exists constants 0 ≤ �1 ≤ �2 such that
the set of {Hk} generated by the algorithm in the stochastic form satisfies

�1 ≼ Hk ≼ �2 (4.46)
Proof. For ease of analysis, we study with respect to the direct Hessian Bk instead of the inverse
Hessian Hk. The updates of proposed oLNAQ and oLMoQ given as

1. Set B(0)k = yTkyk
sTj yk

I and m = min{k, mL}, where mL is the limited memory size.
2. For i = 0, ..., m − 1, set j = k − m + 1 + i and compute

B(i+1)k = B(i)k −
B(i)k sjs

T
j B

(i)
k

sTj B
(i)
k sj

+
yjyTj
yTj sj

(4.47)

3. Set Bk+1 = B(mL)k

4. Update the curvature pairs sk and yk as
sk = wk+1 − (wk + �vk) = wk+1 − ŵk, (4.48)
yk = ∇Eb(wk+1) − ∇Eb(wk + �vk) = ∇Eb(wk+1) − ∇Eb(ŵk) (in case of NAQ) (4.49)
yk = ∇Eb(wk+1) − (1 + �)∇Eb(wk) + �∇Eb(wk−1) (in case of MoQ) (4.50)

As consequence of Assumption 4.5.2 and the convexity of the objective function defined in As-
sumption 4.5.1, the eigenvalues of any sub-sampled Hessian are bounded above and away from zero
and we have,

�sk ≤ Bksk ≤ Lsk (4.51)

�yTksk ≤ y
T
kBksk ≤ LyTksk (4.52)

�yTksk ≤ y
T
kyk ≤ LyTksk (4.53)

�yTksk ≤ ‖yk‖2 ≤ LyTksk (4.54)

� ≤
‖yk‖2

yTksk
≤ L (4.55)

46

CHAPTER 4. ACCELERATED STOCHASTIC QUASI-NEWTON METHODS

Therefore B(0)k initialized by yTkyk
sTj yk

I is bounded away from zero. The trace and determinant of a
matrix gives the bound on the largest and smallest eigenvalues respectively. Hence we use the trace-
determinant argument to show that the eigenvalues of Bk are bounded away from zero. Let T r(Bk

)

and Det(Bk
) be the trace and determinant of the Hessian Bk.

T r
(

Bk+1
)

= T r
(

B(0)k
)

− T r
m
∑

i=1

(

B(i)k sk,is
T
k,iB

(i)
k

sTk,iB
(i)
k sk,i

)

+ T r
m
∑

i=1

(

yk,iyTk,i
yTk,isk,i

)

(4.56)

T r
(

Bk+1
)

≤ T r
(

B(0)k
)

+ T r
m
∑

i=1

(

‖yk,i‖2

yTk,isk,i

)

(4.57)

T r
(

Bk+1
)

≤ T r
(

B(0)k
)

+ mL ≤ C1, (4.58)
for some positive constant C1, where the inequalities are due to B(0)k being bounded away from zero (as
seen above) and (4.55).

Using the result from Powell [61], the determinant of the Hessian Bk+1 generated by the proposed
stochastic NAQ and MoQ algorithms can be expressed as,

Det
(

Bk+1
)

= Det
(

B(0)k
)

m
∏

i=1

yTk,isk,i
sTk,iB

(i)
k sk,i

(4.59)

Det
(

Bk+1
)

= Det
(

B(0)k
)

m
∏

i=1

yTk,isk,i
sTk,isk,i

sTk,isk,i
sTk,iB

(i)
k sk,i

(4.60)

Det
(

Bk+1
)

≥ Det
(

B(0)k
)

(�
C1

)m
≥ C2 (4.61)

for some positive constant C2, where the inequalities are due to the largest eigenvalues B(i)k is less than
C1 (as seen above) and Assumption 4.5.2.

From the above trace-determinant inequalities above, the eigenvalues of all Bk are bounded away
from zero uniformly.

Lemma 4.5.2. Suppose Assumptions 4.5.1 - 4.5.3 hold and �1I ≤ ‖Hk‖ ≤ �2I ∀ k = 1, 2, ..., kmax ∈ ℕ
and 0 < �1 ≤ �2, then the iterates {ŵk} and average function values E(ŵk) generated by the algorithm
satisfies

EXk
[E(ŵk+1)] − E(w∗) ≤ E(ŵk) − E(w∗) − (1 + �k)�k�1‖∇E(ŵk)‖2 +

L
2 (1 + �k)

2�2k�
2
2
2 (4.62)

Proof.
E(ŵk+1) = E(ŵk − (1 + �k)�kHk∇Eb(ŵk)) (4.63)

E(ŵk+1) ≤ E(ŵk) − (1 + �k)�k∇E(ŵk)THk∇E(ŵk) +
L
2 ‖ŵk+1 − ŵk‖

2
2 (4.64)

E(ŵk+1) ≤ E(ŵk) − (1 + �k)�k∇E(ŵk)THk∇Eb(ŵk) +
L
2
‖(1 + �k)�kHk∇Eb(ŵk)‖22 (4.65)

E(ŵk+1) ≤ E(ŵk) − (1 + �k)�k∇E(ŵk)THk∇Eb(ŵk) +
L
2
(1 + �k)2�2k�

2
2‖∇Eb(ŵk)‖

2
2 (4.66)

47

CHAPTER 4. ACCELERATED STOCHASTIC QUASI-NEWTON METHODS

Taking the expectation over all Xk we have,
EXk

[

E(ŵk+1)
]

≤ E(ŵk) − (1 + �k)�k∇E(ŵk)THk∇E(ŵk) +
L
2 (1 + �k)

2�2k�
2
2EXk

[

‖∇Eb(ŵk)‖2
]2

(4.67)
EXk

[E(ŵk+1)] ≤ E(ŵk) − (1 + �k)�k�1‖∇E(ŵk)‖2 +
L
2 (1 + �k)

2�2k�
2
2
2 (4.68)

Subtracting the optimal objective function value E(w∗) from both sides,
EXk

[E(ŵk+1) − E(w∗)] ≤ E(ŵk) − E(w∗) − (1 + �k)�k�1‖∇E(ŵk)‖2 +
L
2
(1 + �k)2�2k�

2
2
2 (4.69)

Theorem 4.5.1. Suppose Assumptions 4.5.1 - 4.5.4 and Lemma 2 holds true, then,

lim
k→∞

‖∇E(ŵk)‖ = 0. (4.70)
Proof. The proof uses Lemma 2 to build a supermartingale sequence similar to [46] (see Theorem 6
proof). We define the stochastic process �k as

�k ∶= E(ŵk) − E(w∗) +
L
2 (1 + �k)

2�22
2
∞
∑

u=k
�2u (4.71)

From Assumption 4.5.4, �k is well defined as ∑∞
u=k �

2
u <

∑∞
u=0 �

2
u < ∞ is summable. Further we

define the sequence �k as
�k ∶= (1 + �k)�k�1‖∇E(ŵk)‖2 (4.72)

The conditional expectation of �k given k, where k is the �-algebra measuring �k, �k and ŵk, is
given as

E[�k+1|k] = E[E(ŵk+1)|k] − E(w∗) +
L
2 (1 + �k)

2�22
2

∞
∑

u=k+1
�2u (4.73)

Substituting 4.69 in 4.73 and using the definitions of �k and �k,
E[�k+1|�k] ≤ �k − �k (4.74)

Since the sequence of �k and �k are non-negative, they satisfy the conditions of the supermartingale
convergence theorem. Therefore we can conclude that sequence �k converges almost surely and the
sum∑∞

k=0 �k <∞ is almost surely finite. Therefore we have
∞
∑

k=0
(1 + �k)�k�1‖∇E(ŵk)‖2 <∞ (4.75)

Since, (1 + �k)�1 is constant and the sequence of step sizes �k is non-summable, it implies that
lim
k→∞

‖∇E(ŵk)‖ = 0. (4.76)

Theorem 4.5.2. Suppose Assumptions 4.5.1 - 4.5.4 and Lemma 2 holds true, let w∗ be the unique
minimizer of the objective function, then for all k we have,

E(ŵk+1) − E(w∗) ≤ �kE(ŵ0) − E(w∗) (4.77)

48

CHAPTER 4. ACCELERATED STOCHASTIC QUASI-NEWTON METHODS

where the convergence rate � is linear and is given by

� =
(

1 − L(1 + �)�k
[

2�1 + L(1 + �)�k�22
])

< 1 (4.78)

provided the step size �k is chosen by a decaying schedule.

Proof.

EXk
[E(ŵk+1) − E(w∗)] ≤ E(ŵk) − E(w∗) − (1 + �k)�k�1‖∇E(ŵk)‖2 +

L
2 (1 + �k)

2�2k�
2
2‖∇E(ŵk)‖

2

(4.79)
EXk

[E(ŵk+1) − E(w∗)] ≤ E(ŵk) − E(w∗) − (1 + �k)�k
[

�1 +
L
2 (1 + �k)�k�

2
2

]

‖∇E(ŵk)‖2 (4.80)
For any vector p ∈ ℝd , from optimality condition we have,

E(p) ≥ E(ŵk) + ∇E(ŵk)T(p − ŵk) +
L
2
‖p − ŵk‖2 (4.81)

≥ E(ŵk) + ∇E(ŵk)T(−
1
�
∇E(ŵk)) +

L�
2 ‖

1
L
∇E(ŵk)‖2 (4.82)

≥ E(ŵk) −
1
L
‖∇E(ŵk)‖2 +

L
2
‖

1
L
∇E(ŵk)‖2 (4.83)

≥ E(ŵk) −
1
2L
‖∇E(ŵk)‖2 (4.84)

Setting p = w∗,
E(w∗) ≥ E(ŵk) −

1
2L
‖∇E(ŵk)‖2 (4.85)

2L[E(ŵk) − E(w∗)] ≤ ‖∇E(ŵk)‖2 (4.86)

EXk
[E(ŵk+1)−E(w∗)] ≤ E(ŵk)−E(w∗)−(1+�k)�k

[

�1+
L
2 (1+�k)�k�

2
2

]

2L[E(ŵk)−E(w∗)] (4.87)

EXk
[E(ŵk+1) − E(w∗)] ≤ [E(ŵk) − E(w∗)]

[

1 − L(1 + �k)�k
[

2�1 + L(1 + �k)�k�22
]

]

(4.88)

We define �k = EXk
[E(ŵk) − E(w∗)]

�k+1 ≤ �k
(

1 − L(1 + �k)�k
[

2�1 + L(1 + �k)�k�22
])

(4.89)
By recursive application of the above inequality, we get,

�k+1 ≤ �0
(

1 − L(1 + �)�k
[

2�1 + L(1 + �)�k�22
])k (4.90)

The convergence rate is given as
E(ŵk+1) − E(w∗)
E(ŵ0) − E(w∗)

≤
(

1 − L(1 + �)�k
[

2�1 + L(1 + �)�k�22
])k (4.91)

49

CHAPTER 4. ACCELERATED STOCHASTIC QUASI-NEWTON METHODS

Figure 4.11: A comparison of the step size decay schedules.

4.6 Discussions

4.6.1 Choice of step size

In full batch methods, the step size or the learning rate is usually determined by line search methods
satisfying either Armijo or Wolfe conditions. However, in stochastic methods, line searches are not
quite effective since search conditions apply global validity. This cannot be assumed when using small
local sub-samples [44]. Several studies show that line search methods does not necessarily ensure
global convergence and have proposed methods that eliminate line search [27, 54, 55]. Moreover,
determining step size using line search methods involves additional function computations until the
search conditions such as the Armijo or Wolfe condition is satisfied. Hence we determine the step
size using a simple learning rate schedule. Common learning rate schedules are polynomial decays
and exponential decay functions. In this study, we determine the step size of o(L)NAQ using (4.92),
o(LBFGS) using (4.93) and oLMoQ using (4.94)

�k = 1∕
√

k, (4.92)

�k = �∕(� + k) ⋅ �0, (4.93)
�t+1 = �t ⋅ �, (4.94)

where t is the epoch number, �0 is set to 1 and � is a chosen between (0,1), recommended setting is 0.5.
If the step size is too large, which is the case in the initial iterations, the learning can become unstable.
This is stabilized by direction normalization and applied to all oLBFGS, oLNAQ and oLMoQ.

4.6.2 Choice of parameters

The momentum term � is a hyperparameter with a value in the range 0 < � < 1 and is usually chosen
closer to 1 [19, 31]. The performance for different values of the momentum term were studied for both
the classification and regression datasets. For the limited memory schemes, a memory size of m = 4

50

CHAPTER 4. ACCELERATED STOCHASTIC QUASI-NEWTON METHODS

showed optimum results for all the four problem datasets with different batch sizes. Larger memory
sizes also show good performance. However considering computational efficiency, memory size is
usually maintained smaller than the batch size. Since the computation cost is 2bd + 6md, if b ≈ m the
computation cost would increase to 8bd. Hence a smaller memory is desired. Memory sizes less than
m = 4 does not perform well for small batch sizes and hence m = 4 was chosen.

4.6.3 Computation and Storage Cost

Table 4.1: Summary of Computational Cost and Storage.

Algorithm Computational Cost Storage

ful
lb

atc
h

BFGS nd + d2 + �nd d2
NAQ 2nd + d2 + �nd d2
MoQ nd + d2 + �nd d2 + d

LBFGS nd + 4md + 2d + �nd 2md
LNAQ 2nd + 4md + 2d + �nd 2md
LMoQ nd + 4md + 2d + �nd (2m + 1)d

on
lin

e

oBFGS 2bd + d2 d2
oNAQ 2bd + d2 d2
oMoQ bd + d2 d2 + d

oLBFGS 2bd + 6md 2md
oLNAQ 2bd + 6md 2md
oLMoQ bd + 6md (2m + 1)d

The summary of the computational cost and storage for full batch and stochastic (online) methods
are illustrated in Table 4.1. The cost of function and gradient evaluations can be considered to be nd,
where n is the number of training samples involved and d is the number of parameters. The Nesterov’s
Accelerated quasi-Newton (NAQ) method computes the gradient twice per iteration compared to the
BFGS quasi-Newton method which computes the gradient only once per iteration. Thus NAQ has an
additional nd computation cost. The MoQ method approximates the Nesterov’s accelerated gradient as
a linear combination of past gradients, thereby computing only one gradient per iteration like the BFGS
method. In BFGS, NAQ and MoQ algorithms, the step length is determined by line search methods
which involves � function evaluations until the search condition is satisfied. The k − 1tℎ gradient is
stored in memory. In the limited memory forms the Hessian update is approximated using the two-loop
recursion scheme, which requires 4md + 2d multiplications. In the stochastic setting, both oBFGS
and oNAQ compute the gradient twice per iteration, making the computational cost the same in both.
On the other hand, oMoQ computes only one gradient per iteration, thus reducing the computation
cost by nd compared to oBFGS and oNAQ. The stochastic methods do not use line search and due to
smaller number of training samples (minibatch) in each iteration, the computational cost is smaller
compared to full batch. Further, in stochastic limited memory methods, an additional 2md evaluations
are required to compute the search direction as given (4.3). In stochastic methods the computational
complexity is reduced significantly due to smaller batch sizes (b < n).

51

CHAPTER 4. ACCELERATED STOCHASTIC QUASI-NEWTON METHODS

4.7 Summary

In this chapter we have proposed the stochastic extensions of the momentum and Nesterov’s accelerated
quasi-Newton method, in its full and limited memory forms, namely o(L)NAQ and o(LMoQ). The
proposed algorithms is shown to be efficient compared to the stochastic o(L)BFGS method, thus
confirming the effect of acceleration due to the momentum and Nesterov’s gradient terms even in
stochastic settings. We introduced direction normalization to ensure better stability in stochastic updates.
From the results presented above, we can conclude that the proposed o(L)MoQ methods performs
better than conventional o(L)BFGS methods and on par with o(L)NAQ with a reduced computation
cost as a result of only one gradient computation per iteration. It must also be noted that the proposed
o(L)MoQ method may be subject to stochastic noise as the curvature information is estimated from
gradients computed on different mini-batch samples. In any case, our o(L)MoQ method performs
better than the o(L)BFGS. Further analysis on the stochastic noise incurred is kept for future works.
In the future, the effectiveness of the proposed o(L)MoQ will be studied on larger problems. Also, a
detailed study on the effect of the limited memory size m, choice of momentum parameter and learning
rate scheme can be studied in future works.

52

5

Adaptive Stochastic Nesterov’s Accelerated
quasi-Newton

A common problem in training neural networks is the vanishing and/or exploding gradient problem [62]
which is more prominently seen in training of Recurrent Neural Networks (RNNs). This chapter
proposes an adaptive stochastic Nesterov’s accelerated quasi-Newton (aSNAQ) method for training
RNNs. The proposed method is an accelerated second-order method that attempts to incorporate
curvature information while maintaining a low per iteration cost. Furthermore, direction normalization
has been introduced to solve the vanishing and/or exploding gradient problem. This chapter is based
on the results published in [63] and [64]. In addition, we also discuss the convergence of the proposed
aSNAQ method.

5.1 Introduction

Neural networks have shown to be effective in several applications. However, neural network training
poses several challenges. A common problem in training neural networks is the vanishing and/or
exploding gradient problem which is more prominently seen in the training of Recurrent Neural
Networks. Recurrent Neural Networks (RNNs) are powerful sequence models, popularly used in
solving pattern recognition and sequence modeling problems such as text generation, image captioning,
machine translation, speech recognition, etc. The structure of RNNs are similar to feedforward neural
networks except that they also allow self-loops and backward connections between its nodes [65].
These connections make RNNs capable of learning, retaining and expressing long sequential relations.

Despite the capabilities of RNNs in modeling sequences, RNNs are particularly very difficult to
train mainly due to the vanishing and/or exploding gradient problem [62]. Several algorithms and
architectures have been proposed to address the issues involved in training RNNs [66]. Architectures
such as Long Short-Term Memory (LSTM) [67] and Gated Recurrent Units (GRU) have shown to be
more resilient to the gradient issues compared to vanilla RNNs. Several other studies revolve around
proposing algorithms that can be effectively used in training RNNs, some of which propose the use of
second-order curvature information [68]. Though first-order methods are popular for their simplicity
and low computational complexity, second-order methods have shown to speed up convergence despite
its high computational cost. However, very few attempts have been made to train RNNs using second-
order methods. [69] proposed a variant of the Broyden-Fletcher-Goldfarb-Shanon (BFGS) method
that incorporates adaptive mechanisms to train RNNs. However, the high computational cost incurred

53

CHAPTER 5. ADAPTIVE STOCHASTIC NESTEROV’S ACCELERATED QUASI-NEWTON

in second-order methods still poses a major challenge, which further adds up in very long sequence
modeling problems. Recent studies [66, 68, 70, 71] propose algorithms that judiciously incorporate
curvature information while taking the computation cost into consideration.

5.2 Background

Figure 5.1: Structure of a recurrent neural network.

Given an input sequence x = {x1, ..., x�}, RNNs use their internal states to process the sequence of
inputs. The internal states ht of the RNN and the output vector sequence ẑt can be formalized as

ht = ℎ(xtwxℎ + ht−1wℎℎ + bℎ), (5.1)
ẑt = o(htwℎo + bo), (5.2)

where wxℎ is the input to hidden weight matrix, wℎℎ is the hidden to hidden recurrent weight matrix,
and wℎo is the hidden to output weight matrix. bℎ and bo are the bias vectors of the hidden and output
nodes respectively. An activation function such as tanh, ReLU, sigmoid or softmax is used to
introduce non-linearity.

Training in neural networks is an iterative process in which the parameters (the weights and biases)
are updated in order to minimize an objective function. Gradient based algorithms are popularly used
for training and the gradients of the RNN are computed using backpropagation through time [72, 73].
Given a mini-batch X ⊆ Tr with samples (xp, zp)p∈X drawn at random from the training set Tr and
error functionEp(w; xp, zp) parameterized by a vectorw = {wxℎ,wℎℎ,wℎo,bℎ,bo} ∈ ℝd , the objective
function is defined as

min
w∈ℝd

E(w) = 1
|Tr|

∑

p∈Tr

Ep(w). (5.3)

Here we define the error function Ep(w) to be the cross entropy error given by,
Ep(w) = −

∑

t
zt log ẑt, (5.4)

where zt is the expected output and ẑt is the output predicted by the RNN at timestep t. In stochastic
(mini-batch) methods, the objective function is minimized using ∇Eb(w), the gradient of the error
function calculated on a mini-batch X ⊆ Tr of batch size b = |X| as shown below.

Eb(w) =
1
b
∑

p∈X
Ep(w). (5.5)

54

CHAPTER 5. ADAPTIVE STOCHASTIC NESTEROV’S ACCELERATED QUASI-NEWTON

In gradient based methods, the objective function E(w) under consideration is minimized by
updating the parameters w using the iterative formula

wk+1 = wk + vk+1, (5.6)

where k is the iteration count and vk+1 is the update vector, which is defined for each algorithm. This
chapter proposes an accelerated second-order method for training RNNs that build on the algorithmic
framework of the adaQN methods. In the following section we describe the adaQN method as proposed
by [71].

5.2.1 adaQN

adaQN is a recently proposed method which was shown to be suitable for training RNNs as well [71]. It
builds on the algorithmic framework of SQN [47] by decoupling the iterate and update cycles. adaQN
targets the vanishing/exploding gradient issue by initializing H(0)k in the two-loop recursion (Appendix
A.1, step 7) based on the accumulated gradient information as shown below.

[H (0)
k]ii =

1
√

∑k
j=0∇E(wj)

2
i + �

(5.7)

adaQN proposes the use of an accumulated Fisher Information matrix (aFIM) that stores the lastmF
gradient vectors ∇E(wk). This is used in the computation of the y vector for Hessian approximation as

y = 1
|F |

|F |
∑

i=1
Fi ⋅ s (5.8)

The curvature pairs are computed every L steps and stored in (S, Y) buffer only if they are sufficiently
large. Further, adaQN performs a control condition by comparing the error at current and previous
aggregated weights on a monitoring dataset. If the current error is larger than the previous error by a
factor , the aFIM and curvature pair buffers are cleared and the weights are reverted to the previous
aggregated weights. This heuristic further avoids deterioration of performance due to noisy or stale
curvatures.

5.3 Proposed aSNAQ Method

The proposed method - adaptive stochastic Nesterov Accelerated Quasi-Newton (aSNAQ) is a stochastic
QN method by combining (L)NAQ and adaQN which is built on the algorithmic framework of SQN.
It incorporates Nesterov’s accelerated gradient term and a simple adaptively tuned momentum term.
The algorithm is shown in Algorithm 6.1. In the limited memory scheme, the initialization of the
Hessian H(0)k is important as the estimate of the Hessian approxmiation Hk is built upon H(0)k . The
most common initialiation used in most limited BFGS methods is a simple scalar initialization Hessian
H(0)k = sTkyk

yTkyk
I, which is not effective in solving the problems of RNNs. aSNAQ, like adaQN initializes

the Hessian H(0)k based on accumulated gradient information as shown below.

[H (0)
k]ii =

1
√

∑k
j=0∇E(wj)

2
i + �

(5.9)

55

CHAPTER 5. ADAPTIVE STOCHASTIC NESTEROV’S ACCELERATED QUASI-NEWTON

Algorithm 5.1 adaQN Method
Require: minibatch Xk, aFIM buffer F of size mF and curvature pair buffer (S, Y) of size mL
Initialize: wo=wk ∈ ℝd , ws = 0, k = 0 and t = 0
1: while k < kmax do
2: Calculate ∇E(wk)
3: Determine gk using ∇E(wk) in two-loop recursion (Appendix A.1)
4: wk+1 ← wk + �kgk
5: Store ∇E(wk) in F
6: ws = ws + wk+1 ⊳Weight aggregation
7: if mod(k , L) = 0 then
8: Compute average wn = ws∕L
9: ws = 0
10: if t > 0 then
11: if E(wn) > E(wo) then
12: Clear (S, Y) and F buffers
13: Reset wk = wo
14: continue
15: end if
16: s = wn − wo

17: y = 1
|F |
(
|F |
∑

i=1
Fi ⋅ s)

18: if sTy > � ⋅ sTs then
19: Store curvature pairs (s,y) in (S, Y)
20: end if
21: end if
22: Update wo = wn
23: t← t + 1
24: end if
25: k← k + 1
26: end while

The search direction vector gk is computed using the two-loop recursion, incorporating the Nesterov’s
gradient as

gk = −Hk∇E(wk + �vk). (5.10)
An accumulated Fisher Information Matrix (aFIM) is used to store ∇E(wk)∇E(wk)T matrix in a FIFO
memory buffer F of size mF at each iteration. The curvature information pair {s, y} is constructed
using aFIM as shown in (5.36) and (5.37)

s = wt − (wt−1 + �vt−1), (5.11)

y = 1
|F|

|F|
∑

i=1
Fi ⋅ s , (5.12)

wherewt is the average aggregatedweight, t is the curvature pair update counter,Fi = ∇(wk+1)∇(wk+1)T
and |F| is the number of entries present in F. In aSNAQ, the gradient at wk + �vk is used in the search
direction while the gradient at wk+1 is stored in the aFIM for Hessian approximation. Thus twice
gradient computation per iteration is involved just like in NAQ. The curvature pairs are computed every
L steps and stored in (S, Y) only if sufficiently large. The momentum term � is tuned by a momentum
update factor � as shown in step 22. aSNAQ also performs a error control check as shown in step

56

CHAPTER 5. ADAPTIVE STOCHASTIC NESTEROV’S ACCELERATED QUASI-NEWTON

14-18. In addition to reseting the aFIM and curvature pair buffers and restoring old parameters, the
momentum is also scaled down (step17). Unlike adaQN the error control check is carried out on the
same mini-batch sub-sample. Further, direction normalization [49] is introduced in step 4 to improve
stability and to solve the exploding gradient issue.
Algorithm 5.2 aSNAQ Method
Require: minibatch Xk, �min, �max, kmax, accumulated Fisher Information Matrix (aFIM) buffer F of

size mF and curvature pair buffer (S, Y) of size mL , momentum update factor �
Initialize: wk ∈ ℝd , � = �min, vk, wo, vo , ws, vs, k and t = 0
1: while k < kmax do
2: Calculate ∇E(wk + �vk)
3: Determine gk using Algorithm A.1
4: gk = gk∕‖gk‖2 ⊳ Direction normalization
5: vk+1 ← �vk + �kgk
6: wk+1 ← wk + vk+1
7: Calculate ∇E(wk+1) and store in F
8: ws = ws + wk
9: vs = vs + vk
10: if mod(k , L) = 0 then
11: Compute average wt = ws∕L and vt = vs∕L
12: ws = 0 and vs = 0
13: if t > 0 then
14: if E(wt) > E(wt−1) then
15: Clear (S, Y) and F buffers
16: Reset wk = wt−1 and vk = vt−1
17: Update � = max(�∕�, �min)
18: continue
19: end if
20: s = wt − (wt−1 + �vt−1)

21: y = 1
|F |
(
|F |
∑

i=1
Fi ⋅ s)

22: Update � = min(� ⋅ �, �max)
23: if sTy > � ⋅ sTs then
24: Store curvature pairs (s,y) in (S, Y)
25: end if
26: end if
27: t← t + 1
28: end if
29: k← k + 1
30: end while

5.4 Convergence Analysis

In this section, we give the convergence analysis of the proposed aSNAQ algorithm. As shown in the
previous chapter, the Nesterov’s accelerated updates satisfy the secant condition

yk = Bk+1sk, (5.13)

where, sk = wk+1 − (wk +�kvk) = �kdk (5.14)

57

CHAPTER 5. ADAPTIVE STOCHASTIC NESTEROV’S ACCELERATED QUASI-NEWTON

yk = ∇E(wk+1) − ∇E(wk + �kvk) (5.15)
For the ease of convergence analysis, we begin with the alternative expression of the iterate update

equations as introduced in Chapter 4. From (4.15) we have,
wk+1 = wk + �kvk − �kHk∇E(wk + �kvk), (5.16)

and
vk+1 = �kvk − �kHk∇E(wk + �kvk). (5.17)

Let ak = vk
�k
. From (5.17) and (5.16), we have

ak+1 = �kak −Hk∇E(wk + �k�kak). (5.18)
and

wk+1 = wk + �k�kak − �kHk∇E(wk + �k�kak) (5.19)
wk+1 = wk + �kak+1. (5.20)

Let ŵk = wk + �k�kak. Hence,
ak+1 = �kak −Hk∇E(ŵk+1). (5.21)

and,
ŵk+1 = wk+1 + �k�kak+1 (5.22)

= wk + �kak+1 + �k�kak+1 (5.23)
= ŵk − �k�kak + �kak+1 + �k�kak+1 (5.24)
= ŵk + �kak+1 + �k�k(ak+1 − ak) (5.25)

ŵk+1 = ŵk + �kak+1 + �k�k
[

(� − 1)ak −Hk∇E(ŵk)
] (5.26)

ŵk+1 = ŵk − �k
k
∑

i=0

(

�k−ik Hi∇E(ŵi)
)

+ �k�k

[

(1 − �k)
k−1
∑

i=0

(

�k−ik Hi∇E(ŵi)
)

−Hk∇E(ŵk)
]

(5.27)

ŵk+1 ≈ ŵk − �kHk∇E(ŵk) + �k�k
[

(1 − �k)Hk−1∇E(ŵk−1) −Hk∇E(ŵk)
]

(5.28)
ŵk+1 ≈ ŵk − �kHk∇E(ŵk) − �k�kHk∇E(ŵk) (5.29)

ŵk+1 ≈ ŵk − (1 + �k)�kHk∇E(ŵk) (5.30)
Assumption 5.4.1. The sequence of iterates wk and ŵk ∀ k = 1, 2, ..., kmax ∈ ℕ remains in the closed
and bounded set
 on which the stochastic objective function is twice continuously differentiable and
has Lipschitz continuous stochastic gradient, i.e., there exists a constant L > 0 such that

‖∇Eb(ŵk+1) − ∇Eb(ŵk)‖ ≤ L‖ŵk+1 − ŵk‖ ∀ ŵk ∈ ℝd , (5.31)
and the mini batch samples Xk are drawn independently and the stochastic (minibatch) gradient
∇Eb(ŵk) = ∇E(ŵk, Xk) is an unbiased estimator of the full gradient for all ŵk, i.e., E[∇E(ŵk, Xk)] ≈
∇E(ŵk)

58

CHAPTER 5. ADAPTIVE STOCHASTIC NESTEROV’S ACCELERATED QUASI-NEWTON

Assumption 5.4.2. The Hessian matrix Bk = ∇2Eb(ŵk) constructed with mini-batch samples Xk is
bounded and well-defined, .i.e, there exists constants � and L, such that

� ≼ ‖Bk‖ ≼ L ∀ k = 1, 2, ..., kmax ∈ ℕ (5.32)

for all mini-batch samples Xk ⊂ Tr of batch size b.

Assumption 5.4.3. There exists a constant 2 such that ∀ ŵk ∈ ℝd and batches Xk ⊂ Tr of size b,

EXk

[

‖∇E(ŵk, Xk)‖2
]

≤ 2 (5.33)

Lemma 5.4.1. Suppose Assumptions 5.4.1 - 5.4.2 hold, there exists constants 0 ≤ �1 ≤ �2 such that
the set of {Hk} generated by the algorithm in the stochastic form satisfies

�1 ≼ Hk ≼ �2 (5.34)

Proof. For ease of analysis, we study with respect to the direct Hessian Bk instead of the inverse
Hessian Hk. The updates of proposed oLNAQ and oLMoQ given as

1. Set B(0)k =
√

∑k
j=0∇E(wj)

2
i + � and m = min{k, mL}, where mL is the limited memory size.

2. For i = 0, ..., m − 1, set j = k − m + 1 + i and compute

B(i+1)k = B(i)k −
B(i)k sjs

T
j B

(i)
k

sTj B
(i)
k sj

+
yjyTj
yTj sj

(5.35)

3. Set Bk+1 = B(mL)k

4. Update the curvature pairs sk and yk as

sk = wt − (wt−1 + �vt−1) = wt − ŵt−1, (5.36)

yk =
1
|F|

|F|
∑

i=1
Fi ⋅ sk . (5.37)

The inverse Hessian is updated using the limited memory scheme, where the diagonal elements of
the initialH (0)

k is given by
[H (0)

k]ii =
1

√

∑k
j=0∇E(wj)

2
i + �

, (5.38)

[B(0)k]ii =

√

√

√

√

k
∑

j=0
∇E(wj)2i + �, (5.39)

thus the eigenvalues of the matrix B(0)k initialized by the diagonal matrix are bounded above zero, for
all k.

The trace of a matrix gives the largest eigenvalue and determinant the smallest eigenvalue. Hence
we use the trace-determinant argument to show that the eigenvalues of Bk are bounded away from zero.
Let T r(Bk

) and Det(Bk
) be the trace and determinant of the Hessian Bk.

59

CHAPTER 5. ADAPTIVE STOCHASTIC NESTEROV’S ACCELERATED QUASI-NEWTON

T r
(

Bk+1
)

= T r
(

B(0)k
)

− T r
m
∑

i=1

(

B(i)k sk,is
T
k,iB

(i)
k

sTk,iB
(i)
k sk,i

)

+ T r
m
∑

i=1

(

yk,iyTk,i
yTk,isk,i

)

(5.40)

T r
(

Bk+1
)

≤ T r
(

B(0)k
)

+ T r
m
∑

i=1

(

‖yk,i‖2

yTk,isk,i

)

(5.41)
As consequence of Assumption 5.4.2 and the convexity of the objective function defined in As-

sumption 5.4.1, the eigenvalues of any sub-sampled Hessian are bounded above and away from zero
and we have,

�sk ≤ Bksk ≤ Lsk (5.42)

�yTksk ≤ y
T
kBksk ≤ LyTksk (5.43)

�yTksk ≤ y
T
kyk ≤ LyTksk (5.44)

�yTksk ≤ ‖yk‖2 ≤ LyTksk (5.45)
� ≤

‖yk‖2

yTksk
≤ L (5.46)

Therefore, we have the trace of Bk+1 bounded by some positive constant C1 as
T r

(

Bk+1
)

≤ T r
(

B(0)k
)

+ mL ≤ C1, (5.47)
Using the result from Powell [61], the determinant of the Hessian Bk+1 generated by the proposed
stochastic NAQ and MoQ algorithms can be expressed as,

Det
(

Bk+1
)

= Det
(

B(0)k
)

m
∏

i=1

yTk,isk,i
sTk,iB

(i)
k sk,i

(5.48)

Det
(

Bk+1
)

= Det
(

B(0)k
)

m
∏

i=1

yTk,isk,i
sTk,isk,i

sTk,isk,i
sTk,iB

(i)
k sk,i

(5.49)

Det
(

Bk+1
)

≥ Det
(

B(0)k
)

(�
C1

)m
≥ C2 (5.50)

for some positive constant C2, where the inequalities are due to the largest eigenvalues B(i)k is less than
C1 (as seen above) and Assumption 5.4.2.

From the above trace-determinant inequalities above, the eigenvalues of all Bk are bounded away
from zero uniformly.

Theorem 5.4.1. Suppose Assumptions 5.4.1 - 5.4.3 hold and �1I ≤ ‖Hk‖ ≤ �2I ∀ k = 1, 2, ..., kmax ∈ ℕ
and 0 < �1 ≤ �2, then the iterates {ŵk} and average function values E(ŵk) generated by the algorithm
for a constant step size �k chosen such that 0 ≤ �k = (1 + �k)� ≤ �1

�22L
converges to a stationary point

w∗ at a linear rate.

E(ŵk+1)] − E(w∗) ≤ [1 − �(1 + �k)�1�]kE(ŵ0) − E(w∗) (5.51)

60

CHAPTER 5. ADAPTIVE STOCHASTIC NESTEROV’S ACCELERATED QUASI-NEWTON

Proof.
E(ŵk+1) = E(ŵk − (1 + �k)�kHk∇Eb(ŵk)) (5.52)

E(ŵk+1) ≤ E(ŵk) − (1 + �k)�k∇E(ŵk)THk∇E(ŵk) +
L
2 ‖ŵk+1 − ŵk‖

2
2 (5.53)

E(ŵk+1) ≤ E(ŵk) − (1 + �k)�k∇E(ŵk)THk∇Eb(ŵk) +
L
2
‖(1 + �k)�kHk∇Eb(ŵk)‖22 (5.54)

E(ŵk+1) ≤ E(ŵk) − (1 + �k)�k∇E(ŵk)THk∇Eb(ŵk) +
L
2 (1 + �k)

2�2k�
2
2‖∇Eb(ŵk)‖

2
2 (5.55)

Taking the expectation over all Xk we have,
EXk

[

E(ŵk+1)
]

≤ E(ŵk) − (1 + �k)�k∇E(ŵk)THk∇E(ŵk) +
L
2 (1 + �k)

2�2k�
2
2EXk

[

‖∇Eb(ŵk)‖2
]2

(5.56)
EXk

[E(ŵk+1)] ≤ E(ŵk) − (1 + �k)�k�1‖∇E(ŵk)‖2 +
L
2 (1 + �k)

2�2k�
2
2‖∇E(ŵk)‖

2 (5.57)
Subtracting the optimal objective function value E(w∗) from both sides,
EXk

[E(ŵk+1) − E(w∗)] ≤ E(ŵk) − E(w∗) − (1 + �k)�k�1‖∇E(ŵk)‖2 +
L
2
(1 + �k)2�2k�

2
2‖∇E(ŵk)‖

2

(5.58)
EXk

[E(ŵk+1) − E(w∗)] ≤ E(ŵk) − E(w∗) − (1 + �k)�k(�1 +
L
2 (1 + �k)�k�

2
2)‖∇E(ŵk)‖

2 (5.59)
EXk

[E(ŵk+1) − E(w∗)] ≤ E(ŵk) − E(w∗) − (1 + �k)�k
�1
2
‖∇E(ŵk)‖2 (5.60)

For any vector p ∈ ℝd , from optimality condition we have,

E(p) ≥ E(ŵk) + ∇E(ŵk)T(p − ŵk) +
�
2‖p − ŵk‖

2 (5.61)
≥ E(ŵk) + ∇E(ŵk)T(−

1
�
∇E(ŵk)) +

�
2
‖

1
�
∇E(ŵk)‖2 (5.62)

≥ E(ŵk) −
1
�
‖∇E(ŵk)‖2 +

�
2
‖

1
�
∇E(ŵk)‖2 (5.63)

≥ E(ŵk) −
1
2�
‖∇E(ŵk)‖2 (5.64)

Setting p = w∗,
E(w∗) ≥ E(ŵk) −

1
2�‖∇E(ŵk)‖

2 (5.65)
2�[E(ŵk) − E(w∗)] ≤ ‖∇E(ŵk)‖2 (5.66)

We define �k = EXk
[E(ŵk) − E(w∗)]

�k+1 ≤ �k − ��k(1 + �k)�k�1 (5.67)
�k+1 ≤ �k(1 − �(1 + �k)�k�1) (5.68)

By recursive application of the above inequality, we get,
�k+1 ≤ �0

[

1 − �(1 + �k)�k�1
]k (5.69)

E(ŵk+1)] − E(w∗) ≤ [1 − �(1 + �k)�1�]kE(ŵ0) − E(w∗) (5.70)
The convergence rate is given as

E(ŵk+1) − E(w∗)
E(ŵ0) − E(w∗)

≤ [1 − �(1 + �k)�1�]k (5.71)
Thus Theorem 5.4.1 shows that the aSNAQ algorithm converges to a stationary point w∗ at a linear
rate.

61

CHAPTER 5. ADAPTIVE STOCHASTIC NESTEROV’S ACCELERATED QUASI-NEWTON

5.5 Computational Cost

The computation cost is given in Table 5.1. Typical second-order methods such as the BFGS method
incur a cost of nd + d2 + �nd in gradient, Hessian and line-search computation respectively, where
n = |Tr| is the number of training samples and d is the number of parameters. In case of NAQ, an
additional nd cost is incurred due to twice gradient computation. adaQN and the proposed aSNAQ
being stochastic methods, the computation cost in gradient calculation is bd where b is the minibatch
size and d is the number of parameters. The Hessian approximation is carried out using the aFIM
and two-loop recursion, thus reducing the computation cost to (4mL + mF + 2)d. However, the error
control check adds to an additional cost of (b + 4)d∕L. aSNAQ has an additional cost bd and d due to
twice gradient computation and direction normalization. Furthermore, the storage cost of BFGS and
NAQ is d2 while adaQN and aSNAQ is (2mL + mF)d. Overall, the cost of both adaQN and aSNAQ
are of the order O(d) complexity and hence comparable to that of first-order methods.

Table 5.1: Summary of Computational and Storage Cost.
Algorithm Computational Cost Storage
BFGS nd + d2 + �nd d2
NAQ 2nd + d2 + �nd d2
adaQN bd + (4mL + mF + 2)d + (b + 4)d∕L (2mL + mF)d
aSNAQ 2bd + (4mL + mF + 3)d + (b + 4)d∕L (2mL + mF)d

5.6 Simulation Results

In this section, we evaluate the performance of the proposed method on benchmark problems. The
results of the proposed aSNAQ algorithm are compared with first-order Adagrad [12], Adam [22]
and second-order adaQN [71] algorithms. The simulations are performed using Tensorflow. For all
simulations, we choose the aFIM buffer F size as mF = 100 and the limited memory size for the
curvature pairs as mL = 10. The update frequency is chosen to be L = 5, learning rate � = 0.01 and
 = 1.01. The momentum update factor � is set to 1.1. All weights are initialized with random normal
distribution with zero mean and 0.01 standard deviation. The activation function used is tanh. The
hyperparameters of Adagrad and Adam were set to their default values. The performance metrics used
for evaluation are accuracy and error. Accuracy is evaluated as a percentage of the number of correct
predictions by the RNN compared to the expected output while the error is evaluated by the error
function defined for the problem. For all simulations, softmax cross entropy error function is used.

5.6.1 Sequence Counting Problem

The performance of the proposed method is first evaluated on a toy example problem of sequence
counting. Given a binary string (a string with just 0s and 1s) of length T, the task is to determine the
count of 1s in the binary string. A simple one layer RNN with 24 hidden neurons is chosen. The batch
size is set to b = 50, sequence length T = 20, �min = 0.1 and �max = 0.99. Figure 5.2 shows the mean
squared error (MSE) over 75 epochs. It can be observed that the proposed method clearly outperforms

62

CHAPTER 5. ADAPTIVE STOCHASTIC NESTEROV’S ACCELERATED QUASI-NEWTON

adaQN and Adagrad. On comparison with Adam, aSNAQ is faster in the initial iterations and becomes
gradually close to Adam.

Figure 5.2: MSE for sequence counting problem.

5.6.2 Image Classification

RNNs can be used in image classification problems as well. Since RNNs require a sequence input, for
image classification problems, the image is broken into a sequence of pixel values. There are two ways
in sequencing images – row-by-row sequence and pixel-by-pixel sequence. In row-by-row sequencing,
at each timestep one row is fed as input to the RNN while in pixel-by-pixel sequencing, at each timestep
one pixel value is fed as input to the RNN in scanline order starting from the top left to the bottom
right pixel.

(a) MNIST pixels (b) Row-by-row sequencing (c) Pixel-by-pixel sequencing
Figure 5.3: Sequencing of the 28 × 28 pixel MNIST dataset for RNNs

Results on 28 × 28 MNIST Row by Row Sequence

We study the performance of the proposed algorithm on the standard MNIST image [57] classification
problem. The input to the RNN is 28 pixels fed row-wise at each time step, with a total of 28 time
steps. We choose batch size b = 128, �min = 0.1, �max = 0.99. A single layer RNN with 100 hidden
neurons is used. Figure 5.4 shows the training error and accuracy over 35 epochs. As seen from the
results, we can observe that Adagrad performs poorly and stagnates close to its initial error value. On

63

CHAPTER 5. ADAPTIVE STOCHASTIC NESTEROV’S ACCELERATED QUASI-NEWTON

comparing the results with Adam and adaQN, it can be noted that aSNAQ performs better than adaQN
and is almost on par with Adam.

Figure 5.4: Error and accuracy for 28 × 28MNIST row by row sequence on training data.

Results on 28 × 28 MNIST Pixel by Pixel Sequence

We further extend to study the performance of the proposed algorithm on pixel-by-pixel sequential
MNIST. The pixel-by-pixel sequence based classification is a challenging task where the 784 pixels
are fed to the RNN sequentially in scanline order. Since it involves 784 time steps, it is a long range
dependency problem and is much harder compared to the regular classification methods as they are
processed one pixel per time step. Though pixel by pixel sequence training is not a conventional
approach used for image classification, we merely use this example to illustrate the effects of training
long sequences on RNNs. Thus we evaluate the performance on a simple one layer RNN with 100
hidden neurons. We choose batch size b = 128, �min = 0.1, �max = 0.99. Figure 5.5 shows the training
error and accuracy over 35 epochs. In pixel by pixel sequence, both the first order methods Adam
and Adagrad methods perform poorly. Though the overall training accuracies are low, aSNAQ shows
significant improvement in training compared to adaQN, Adam and Adagrad.

5.6.3 Character Level Language modeling

RNNs are widely used in a number of natural language processing tasks. In this example, we evaluate
the performance of the proposed aSNAQ method on character level language modeling problem. The
dataset used is The Tale of Two Cities by Charles Dickens. The dataset contains 757,222 characters,
split into 80%-20% for train and test samples. The batch size is set to 0.5% of the training set. The
vocabulary size, i.e. the number of unique characters including numbers and special characters was
83. The sequence length is set to 50. A 5-layer RNN network with 100 nodes in each layer was used.

64

CHAPTER 5. ADAPTIVE STOCHASTIC NESTEROV’S ACCELERATED QUASI-NEWTON

Figure 5.5: Error and accuracy for 28 × 28MNIST pixel by pixel sequence on training data.

Figure 5.6: Error and accuracy for Character Level Language modeling (5-layer RNN) on test data.

Figure 5.6 shows the error and accuracy of the character level modeling over 30 epochs. From the
graph it can be observed that the second-order adaQN and aSNAQ methods perform better compared
to the first-order Adagrad and Adam. Further, aSNAQ shows significant acceleration compared to
adaQN, thus confirming that the proposed aSNAQ method is suitable for training RNNs at a much
faster rate.

65

CHAPTER 5. ADAPTIVE STOCHASTIC NESTEROV’S ACCELERATED QUASI-NEWTON

5.6.4 Performance on LSTM

To further validate the performance of the proposed method on other RNN architectures, we consider
the character level language modeling problem using LSTM architecture. LSTMs (Long short term
memory) [67] were especially designed to model long range sequences with long-term dependencies
by introducing gate units. A typical LSTM cell consists of an input gate, forget gate and output gate,
that filters the information being passed, and thus help in solving the vanishing and exploding gradient
issue. In this problem, we consider a two layer LSTM network with 100 hidden neurons each. Same as

Figure 5.7: Structure of a long-short term memory (LSTM) unit.

in section 4.3, the dataset used is The Tale of Two Cities by Charles Dickens. The dataset is split into
80%-20% for train and test samples and the batch size is set to 0.5% of the training set. The vocabulary
size is 83 and the sequence length is set to 50. Figure 5.8 shows the error and accuracy over 30 epochs.
The results obtained confirm that the proposed aSNAQ algorithm can be effectively used even for other
RNN architectures. It can be observed that in this problem Adam performs the best. However, aSNAQ
still performs better than Adagrad and adaQN. Further improvement in the overall performance of the
model can be achieved by increasing the model depth.

5.7 Discussion

From the above simulation results, it can be observed that the proposed aSNAQ method shows good
performance with sufficiently small errors and good accuracies compared to the second-order adaQN
and first-order Adagrad and Adam methods. RNNs commonly used in modeling long sequences with
long-term dependencies are difficult to train due to the vanishing and exploding gradient issue. Both,
the first and second-order methods were able to train a vanilla RNN for a simple toy example such
as the sequence counting problem. For examples with short dependencies (section 4.1 and 4.2.1),
Adam performed the best with errors smaller than aSNAQ. However, as the sequence length or the
scale of the network increases, the first-order methods do not perform well on vanilla RNN. On the
other hand, both the second-order methods – adaQN and aSNAQ were consistent and effective in
training the RNN. For the same language modeling problem described in section 5.6.3 and 5.6.4, Adam

66

CHAPTER 5. ADAPTIVE STOCHASTIC NESTEROV’S ACCELERATED QUASI-NEWTON

Figure 5.8: Error and accuracy for Character Level Language modeling on 2-layer LSTM network on
test data.

performed the best on the 2-layer LSTM network, whereas on the 5-layer vanilla RNN it performed the
worst. This could be possibly because LSTMs are resilient to the vanishing and exploding gradient
problem. However, in all the examples, aSNAQ showed better performance compared to adaQN
with significantly higher accuracies and low errors. Also, the direction normalization implemented
in aSNAQ is similar to gradient clipping, which is a popular solution to the vanishing and exploding
gradient issue. Hence, it can be deduced from the consistent performance of aSNAQ that it is efficient
in combating the vanishing and exploding gradient issue. On comparing the computation cost, it can
be noted that adaQN and aSNAQ have a low per-iteration cost of the order O(d) since mL, mF ≪ d
and is comparable in terms of the order of computational complexity of first-order methods. Though
aSNAQ has a slightly higher computation cost compared to adaQN, it is well compensated by its
accelerated performance. Furthermore, aSNAQ shows to be effective not only on vanilla RNNs, but
also LSTM and hence suggest a good feasibility to be applied to different problems and architectures.
A detailed analysis of the proposed method on more examples and different network structures should
be performed to further validate the effectiveness of the proposed aSNAQ algorithm.

5.8 Summary

In this chapter we discussed on the proposed adaptive stochastic Nesterov’s accelerated quasi-Newton
method for training recurrent neural networks (RNNs). The proposed aSNAQ method is an accelerated
method that combines adaQN with NAQ by introducing the Nesterov’s accelerated gradient and
momentum term. aSNAQ attempts to incorporate second-order curvature informationwhilemaintaining
a low per-iteration cost which is of the order O(d). The performance of the proposed method was
verified on benchmark image classification and language modeling problems. From the simulation

67

CHAPTER 5. ADAPTIVE STOCHASTIC NESTEROV’S ACCELERATED QUASI-NEWTON

results, it was confirmed that incorporating the Nesterov’s accelerated gradient and momentum term
improves the performance in the training of RNNs compared to adaQN and other popular first-order
methods such as Adagrad and Adam. Further evaluation on LSTM network validates the effectiveness
of aSNAQ on other architectures as well. We further provide the convergence analysis of the proposed
algorithm and show that aSNAQ converges to a stationary point at a linear rate.

68

6

Quasi-Newton Methods for Deep Reinforcement
Learning

Recent advances in deep reinforcement learning has led to its application in a number of real-world
problems. One of the most popularly used deep reinforcement learning algorithms is the deep Q-
learning method which uses neural networks to approximate the estimation of the action-value function.
Training of deep Q-networks (DQN) is usually restricted to first-order gradient based methods. Though
second-order methods have shown to have faster convergence in several supervised learning problems,
their application in deep reinforcement learning is limited. This chapter demonstrates the efficiency
of our proposed aSNAQ method, in accelerating the training of deep Q-networks. As a use case for
application in real-world examples, we consider the VLSI global routing problem, which is modeled
using deep reinforcement learning to obtain optimum routing solutions. This chapter is based on results
published in [74] and [75].

6.1 Introduction

Figure 6.1: Reinforcement learning model (Reproduced from [76]).

69

CHAPTER 6. QUASI-NEWTON METHODS FOR DEEP REINFORCEMENT LEARNING

Reinforcement learning (RL) is a machine learning technique where an agent perceives its current
state and takes some actions by interacting with an environment [76]. At each time step t, the agent
receives an observation of the current state s of the enviroment, based on which the agent chooses
an action a, for which the environment returns a reward r and updates its current as s′. Each cycle of
this agent-environment interaction is called an experience = {s, a, r, s′} which is stored in memory
for training the reinforcement learning algorithm. The reinforcement learning algorithm attempts to
find a policy �, the function mapping from states to actions, for maximizing the cumulative reward
over the course of the problem. Figure 6.1 shows a pictorial representation of a reinforcement learning
model.

The Q-learning algorithm [77] is one of the popular off-policy reinforcement learning algorithms
that chooses the best action based on estimates of the state-action value Q(s, a) represented in the form
of a table called the Q-table. As the state and action space of the problem increases, the estimation
of the state-action value can be slow and time consuming. Hence, the state-action value (Q-value) is
often estimated as a function approximation. These function approximations can be represented as
a non-convex, non-linear unconstrained optimization problem and can be solved using deep neural
networks (known as deep Q-networks) [78]. Training neural networks in reinforcement learning tasks
is usually slow and challenging due to the training data being temporally correlated, non-stationary and
presented as a stream of experiences rather than batches like in supervised learning. Training of Deep
Q-Networks (DQN) are usually restricted to first-order methods such as stochastic gradient descent
(SGD), RMSprop [21], Adam [22], etc. Using second-order curvature information have shown to
improve the performance and convergence speed for non-convex optimization problems. In extension
to the previous chapter which showed the efficiency of the adaptive Stochastic Nesterov’s Accelerated
Quasi-Newton method (aSNAQ), this chapter attempts to verify the feasibility aSNAQ in training deep
Q-Networks, considering that this type of training is more challenging compared to batch training since
the training samples in reinforcement learning are a continuous stream of experiences, that makes it
more prone to unlearning effective features over time. The evaluation shows that aSNAQ allows more
stable approximations and is efficient in training DQNs for deep reinforcement learning applications.

The rest of the chapter is organized as follows: section 6.2 gives a brief background of reinforcement
learning and its notations, followed by an introduction to the aSNAQ algorithm for DQN in section 6.3.
We study the performance of the proposed method in an example of solving the VLSI global routing
problem using deep reinformcement learning, the framework of which is detailed in section 6.4. In
section 6.5, we summarize the results and conclude in section 6.6.

6.2 Background

The Reinforcement Learning (RL) problem is typically modeled as a Markov’s Decision Process
(MDP). In order to solve the MDP, the estimates of the value function of all possible actions is learnt
using Q-learning method, a form of temporal difference learning [77]. The Q-learning algorithm
estimates the state-action value Q(s, a) for all possible state and action combinations, represented in
the form of a table called the Q-table, and the action corresponding to the largest state-action value
is chosen in the view of maximizing the cumulative future reward. With increase in the state-action
space of the problem, the estimation of the state-action values become complex and is thus estimated
by function approximations which are then solved by deep neural networks, known as deep Q-networks

70

CHAPTER 6. QUASI-NEWTON METHODS FOR DEEP REINFORCEMENT LEARNING

(DQNs) [78]. The optimal action-value functionQ∗(s, a) that maximizes the cumulative reward satisfies
the Bellman equation and is given as

Q∗(s, a) = Es′∼[+ maxa′Q∗(s′, a′)|s, a], (6.1)
where is the discount factor. The Q-learning algorithm is an off-policy, model-free reinforcement
learning algorithm that iteratively learns the optimal action-value function. In deep Q-learning, this
function is optimized by a neural network parameterized by w. The inputs to the neural network are
the states s and the output predicted by the neural network correspond to the action values Q(s, a;w)
for each action a. A replay buffer of fixed memory stores the transitions (s, a, r, s′) of the agent’s
experiences from which samples are randomly drawn for training the DQN. The loss function (w) as
shown in (6.2) is used in backpropagation and calculation of the gradients for updating the parameters
w.

(w) = E(s,a)∼[(−Qw(s, a))2], (6.2)
where the target function is given as

 = E(s′)∼[r + maxa′Qw(s′, a′)]. (6.3)
DQNs are said to overestimate the update of the action-value function since Qw(s, a) is used to

select the best next action at state s′ and apply the action value predicted by the same Qw(s, a). Double
deep Q-learning [79] resolves this issue by decoupling the action selection and action value estimation
using two Q-networks. The target function of double DQN is given as

 = E(s′)∼[r + Qw−(s′, argmaxa′Qw(s′, a′))]. (6.4)
w and w− represent the parameters of the two Q networks – primary and target networks, respectively.
The primary network parameters are periodically copied to the target network using Polyak averaging
as shown in (6.5), where � is a small value such as 0.05.

w− ← �w + (1 − �)w−. (6.5)
At each iteration of the training, the parameters of the DQN are updated as

wk+1 = wk + vk, (6.6)
where vk is the update vector which varies for each training algorithm. The update vector for first-order
methods take the form

vk = −�∇(wk), (6.7)
where ∇(wk) is the gradient of the loss function calculated on a small mini-batch sample drawn at
random from the experience replay buffer .

6.3 Nesterov’s Accelerated Quasi-Newton Method for
Q-learning

First order gradient based methods have been commonly used in training DQNs due to their simplicity
and low computational complexity. However approximated second-order quasi-Newton methods have

71

CHAPTER 6. QUASI-NEWTON METHODS FOR DEEP REINFORCEMENT LEARNING

Algorithm 6.1 aSNAQ for DQN
Require: minibatch Xk, �min, �max, kmax, max, aFIM buffer F of size mF and curvature pair buffer

(S,Y) of size mL, momentum update factor �, experience replay buffer
Initialize: wo=wk ∈ ℝd , � = �min, vk, vo , ws, vs, and t = 0
1: for episode = 1, 2, ..., max do
2: Initialize state s
3: for step k = 1, 2, ..., kmax do
4: Take action a based on �-greedy strategy
5: Store transistion (s, a, r, s′, a′) in
6: Sample random minibatch Xk from
7: Calculate ∇(wk + �vk)
8: Determine gk using two loop recursion (Appendix A.1)
9: gk = gk∕‖gk‖2
10: vk+1 ← �vk + �kgk
11: wk+1 ← wk + vk+1
12: Calculate ∇(wk+1) and store in F
13: ws = ws + wk+1 and vs = vs + vk+1
14: if mod(k, L) = 0 then
15: Compute avg wt = ws∕L and vt = vs∕L
16: ws = 0 and vs = 0
17: if t > 0 then
18: if (wt) > �(wt−1) then
19: Clear (S,Y) and F buffers
20: Reset wk = wt−1 and vk = vt−1
21: Update � = max(�∕�, �min)
22: continue
23: end if
24: s = wt − (wt−1 + �vt−1)

25: y = 1
|F| (

|F|
∑

i=1
Fi ⋅ s)

26: Update � = min(� ⋅ �, �max)
27: if sTy > � sTs then
28: Store curvature pairs (s,y) in (S,Y)
29: end if
30: end if
31: t← t + 1
32: end if
33: end for
34: end for

shown to signficantly speed up convergence in non-convex optimization problems. The Nesterov’s
accelerated quasi-Newton (NAQ) method [31] and its variants [32, 37] have shown to accelerate
convergence compared to the standard quasi-Newton method in various supervised learning frameworks.
Reinforcement learning is different from traditional supervised learning in terms that the training
data distribution changes as the policy improves, which results in the objective function being non-
stationary [80]. The performance of deep reinforcement learning is thus sensitive to hyperparameters,
choice of architecture [81], replay buffer size and optimizer hyperparameters [82]. This study extends
our previous work [64,75] by investigating the feasibility of our proposed adaptive stochastic Nesterov’s
Accelerated Quasi-Newton (aSNAQ) algorithm in training deep Q-networks and show that the aSNAQ

72

CHAPTER 6. QUASI-NEWTON METHODS FOR DEEP REINFORCEMENT LEARNING

method allows more stable approximations for deep reinforcement learning applications. The aSNAQ
algorithm for training DQN is shown in Algorithm 6.1.

The Nesterov’s accelerated quasi-Newton (NAQ) method achieves faster convergence by quadratic
approximation of the objective function at wk + �vk and by incorporating the Nesterov’s accelerated
gradient ∇(wk + �vk). The aSNAQ algorithm builds on the algorithmic framework of adaQN [71]
and NAQ [31]. The update vector vk can be written as

vk+1 = �vk + �kgk, (6.8)

where gk is the search direction given by

gk = −Hk∇(wk + �vk). (6.9)

The search direction vector gk is computed using the two-loop recursion [1] as shown in Appendix A.1.
The Hessian Hk is initialized with non-constant diagonal entries based on the accumulated gradient
information as

[H(0)k]ii =
1

√

∑k
j=0∇(wj)

2
i + �

, (6.10)

where � = 10−4 is used to prevent numerical instability. aSNAQ uses an accumulated Fisher Information
Matrix (aFIM) for computing the curvature information pair (s, y) for the Hessian computation as
shown in (6.11) and (6.12)

s = wt − (wt−1 + �vt−1), (6.11)

y = 1
|F|

|F|
∑

i=1
Fi ⋅ s , (6.12)

where wt is the average aggregated weight, t is the update counter of the curvature information pair,
Fi = ∇(wk+1)∇(wk+1)T and |F| is the number of entries present in F. The y vector is computed
without explicitly constructing the ∇(wk+1)∇(wk+1)T matrix by just storing the ∇(wk+1) vector.
The use of the Fisher Information matrix (aFIM) gives a better estimate of the curvature of the problem.
In deep Q-learning, the estimated stochastic gradient has a large variance as it is estimated on the
basis of the data collected from only one step action or a small batch of actions. Thus it often suffers
from inaccurate estimation of the gradients which can be viewed as distorted gradient direction [8, 83].
The curvature information pair (s, y) is computed based on the average of the weight aggregates and
Hessian-vector product, and thus reduces the effect of noise and allows for more stable approximations.
Furthermore, normalizing the search direction at each iteration ensures that the algorithm does not
move too far away from the current objective [49]. The curvature pairs are computed every L steps
and stored in the (S,Y) buffer only if sufficiently large. This allows for the updates being made only
based on useful curvature information. The size of the (S,Y) buffer and aFIM buffer F are set to
mL and mF , respectively, thus optimizing storage cost to (2mL + mF)d compared to a d2 storage cost
incurred in BFGS and NAQ, where d is the number of parameters. The control heuristics as shown in
steps 18-22 further allows to take a step back to a previously learnt parameter w if the loss ∇(wt) is
larger compared to the loss ∇(wt−1). Though this incurs an additional cost of (b + 4)d∕L, where b is
the batch size, the control heuristics contributes to better approximations and thus early convergence.
The momentum parameter � is also adaptively updated as shown in steps 21 and 26. Further, the

73

CHAPTER 6. QUASI-NEWTON METHODS FOR DEEP REINFORCEMENT LEARNING

curvature pair information (s, y) and hence the Hessian approximation is updated once in L iterations,
thus reducing computational cost. The order of computational complexity of second-order methods is
usually O(d2) in case of quasi-Newton methods and O(d3) in case of Newton methods, while aSNAQ
reduces the computation cost to 2bd + (4mL + mF + 3)d + (b + 4)d∕L, which is in the order of O(d),
and comparable to first-order methods.

6.4 VLSI Global Routing

Synthesis and physical design optimizations are the core tasks of the VLSI / ASIC design flow. Global
routing has been a challenging problem in VLSI physical design. VLSI physical design requires to
compute the best physical layout of millions to billions of circuit components on a tiny silicon surface
(< 5cm2). It is carried out in several stages such as partitioning, floor-planning, placement, routing and
timing-closure. In the placement stage, the locations of the circuit components, i.e. cells, are determined.
Once all cell locations are set, the paths for all the connections of the circuit, i.e. nets, are determined in
the routing stage. Global routing involves a large and arbitrary number of nets to be routed, where each
net may consist of many pins to be interconnected with wires. In addition, the IC design consideration
may impose several constraints such as number of wire crossings (capacity), blockages or congestion,
spacing between wires, etc. In global routing, given a netlist with the description of all the components,
their connections and positions, the goal of the router is to determine the path for all the connections
without violating the constraints and design rules. Conventional routing automation tools are usually
based on analytical and path search algorithms such as A* search [84], which are NP complete. Hence
a machine learning approach would be more suitable for this kind of automation problem. Most
studies that propose AI techniques such as machine learning, deep learning, genetic algorithms deal
with only prediction of routability, short violations, pin-access violations, etc [85, 86]. Moreover, the
non-availability of large labelled training datasets for a supervised learning model is another challenge.
Thus deep reinforcement learning (DRL) is a potential approach to such applications. Reinforcement
learning has been successfully used in several applications ranging from Atari games [87] to controlling
of high degree of freedom in robots [88]. Recently, a reinforcement learning approach to global
routing that uses first-order gradient based method for training the DQN was proposed in [89]. In
this chapter, we attempt to accelerate the training of deep Q-networks by introducing a second-order
Nesterov’s accelerated quasi-Newton method to get better routing solutions in fewer episodes. Also, to
further enhance the performance of the DRL model for global routing, we propose using double deep
Q-learning [79]. The obtained routing solution is evaluated in terms of total wirelength and overflow
and compared with the results of double DQNs trained using Adam and RMSprop.

6.4.1 Global Routing Modelling

The global routing problem is commonly modeled as a grid graph G(V ,E) where V represents a grid
tile where the components are placed and E represents an edge along which wires are drawn [90]. Each
vertical and horizontal edge composing a grid tile is associated with a capacity to limit the number of
wire-crossings. The objective of the router is to find the optimum connections (routing solutions) for
all the pins such that the total wirelength is minimum and no overflow occurs. An overflow is said
to occur when the number of wire-crossings at an edge (utilization) exceeds the capacity set for that

74

CHAPTER 6. QUASI-NEWTON METHODS FOR DEEP REINFORCEMENT LEARNING

particular edge. For every wire routed, the corresponding capacity decreases. Routing is sequential
and hence a common problem is net ordering. Nets routed early can block the routes for later nets
due to utilization of the capacity. Consider an example of a two layer 4 × 4 grid graph as shown in
Figure 6.2. The netlist consists of two pairs of pins, S1 − G1 and S2 − G2 to be routed. In layer 1,
each vertical edge has a capacity of one and each horizontal edge has a capacity of zero while in layer
2 each vertical edge has a capacity of zero and each horizontal edge has a capacity of one. Thus the
routing direction on layer 1 is horizontal and layer 2 is vertical. That is, only horizontal wires can be
drawn in layer 1 and only vertical wires can be drawn in layer 2 as seen in Figure 6.2. A pair of vias
are used to connect between layers. The rectangular blocks represent congestion or blockages and the
capacity corresponding to them is zero and hence no wires can pass through. The total wirelength is
calculated by summing the total wire segments in each layer and vias between layers. A wirelength of
one corresponds to the wire segment passing from one grid tile to another. The solution indicated in
this figure consists of 5 horizontal wire segments in layer 1 and 4 vertical wire segments in layer 2 and
4 via pairs connecting layer 1 and layer 2. Therefore the wirelength is 13 and overflow is 0 since the
utilization does not exceed the capacity.

Figure 6.2: Example of a routing solution.

The global routing problem can be modeled as a 3-dimensional grid-world or maze problem with
multiple start-goal pairs corresponding to the pins to be routed and be solved by reinforcement learning.
The study proposed in [89] shows potential scope for reinforcement learning based global routing,
where the DQN is trained using a first-order gradient based algorithm. Here we evaluate the efficiency
of our second-order aSNAQ algorithm on the reinforcement learning framework for global routing.
In the following section, we briefly explain the adopted reinforcement learning framework for global
routing as proposed by [89].

6.4.2 Deep Reinforcement Learning Framework for Global Routing

The global routing problem is solved using a deep reinforcement learning framework in which for each
two-pin, the agent interacts with the environment and provides the Q-network with a 12 dimensional
state vector s = {s1, s2...s12}. The elements s1, s2, s3 correspond to the agent’s current position in

75

CHAPTER 6. QUASI-NEWTON METHODS FOR DEEP REINFORCEMENT LEARNING

terms of x, y, z coordinates; s4, s5, s6 correspond to the distance in x, y, z coordinates from the current
position to the target pin position; and s7, s8, ..., s12 correspond to the capacity information in each of
the six directions. The action space consists of 6 possible actions corresponding to the direction in
which the agent can move, i.e., up, down, left, right, layer n to layer n + 1, and layer n + 1 to layer n.
We use a small feedforward neural network to estimate the state-action values Q(s, a) = {q1, q2, ..., q6}
corresponding to each of the 6 actions and the agent takes an action based on the �-greedy strategy.

A(s) =

⎧

⎪

⎨

⎪

⎩

random action a with � probability,

argmaxaQw(s, a) with 1 − � probability.
(6.13)

The environment returns a reward R(a, s′) and the capacity information is updated.

R(a, s′) =

⎧

⎪

⎨

⎪

⎩

+100 s′ is the target pin,

−1 otherwise.
(6.14)

The experience replay buffer stores the transitions {s, a, r, s′}which is used for training and updating
the weights using backpropagation. The Q-network architecture used is 12–32–64–32–6 with ReLU
activation.

6.5 Simulation Results

The performance of our proposed aSNAQ method is evaluated in solving global routing using deep
reinforcement learning. In order to further enhance the performance and stability we use double DQN
and consider a two layer n × n grid with two-pins nets. In the following sections, we evaluate the
performance of aSNAQ in comparison to popular first-order Adam and RMSprop. The discount factor
 is set to 0.9. A batch size of 32 is chosen. The performance metrics include the total wirelength and
overflow. For all successful solutions i.e. all nets routed within the maximum number of episodes,
zero overflow was obtained and the corresponding total wirelength was calculated using the ISPD’08
contest evaluator. The routing solution obtained using A* search is set as the baseline for comparison
of the performance metrics. The benchmark netlists were generated using the open-sourced problem

Figure 6.3: Examples of routing of netlists generated by the problem set generator [89].

76

CHAPTER 6. QUASI-NEWTON METHODS FOR DEEP REINFORCEMENT LEARNING

set generator [89]. The problem set generator can generate a number of netlist files complying to the
ISPD’08 input format, with user-specified grid-size, number of nets, number of pins in each net, edge
capacity and blockages. Each netlist comprises of a list of several nets where each net is a collection of
two or more pins or components. The pin positions are arbitrarily set and thus each netlist file generated
is different. Figure 6.3 shows an example of two netlists whose routing solutions were obtained using
the A* search method. Each of these netlists consist of 10 nets with 2 pins each.

6.5.1 Discussion on the choice of mL and mF

The two main hyperparameters in aSNAQ are the limited memory size mL and the accumulated
Fisher Information Matrix (aFIM) size mF . We evaluate the performance of aSNAQ for different
values of the limited memory size mL and aFIM size mF , chosen from the set mL = {2, 4, 8, 16} and
mF = {50, 100, 150}, respectively. For the evaluation, let us consider a small example of a two layer
5 × 5 grid with 10 nets with edge capacity 3 and 3 blockages. The edge capacity defines the number of
wires that can be drawn across an edge and thus gives a limit on the congestion. Blockages denote
edges where no wires can be drawn (i.e. the edge capacity is 0). It denotes those regions of the printed
circuit board (PCB) that are reserved for a special purposes, such as a port. We generated a total of 25
benchmarks using the open-sourced problem set generator [89]. We train our reinforcement learning
model to route 25 benchmark problems with the maximum number of episodes max set to 200, where
an episode constitutes a single pass over the entire set of pin pairs over all nets and the maximum steps

Figure 6.4: Comparison of average reward for different values of mL and mF .

77

CHAPTER 6. QUASI-NEWTON METHODS FOR DEEP REINFORCEMENT LEARNING

kmax for each episode is set to 20.
Figure 6.4 shows the average reward over 25 benchmarks for different combinations of mL and mF

in comparison to Adam and RMSprop. From the figure, we can observe that for all combinations of
mL and mF aSNAQ shows higher average reward in the initial episodes compared to both Adam and
RMSprop. This confirms the acceleration of aSNAQ in training the DQNs. However, for mL = 16 it
can be observed from Figure 6.4(d) that aSNAQ does not perform well after 75 episodes. From Figure
6.4(b) we can observe that for mL = 4, all three values of mF are almost on par with Adam and better
than RMSprop. For mL = 2, a aFIM size of mF = 50 performs the best and for mL = 8, aFIM of size
mF = 100 performs the best.

Figure 6.5: Average reward over 25 benchmarks with 10 two-pin nets.

Figure 6.5 shows the comparison of aSNAQ with the best mF corresponding to mL = 2, 4 and
8. From Figure 6.5, it can be observed that mF = 100 is better compared to mF = 50. While both
mL = 4 and mL = 8 with mF = 100 are almost on par with each other, mL = 8 is comparitively better
than mL = 4. For all successful solutions i.e. all nets routed within the maximum number of episodes
max = 200, zero overflow was obtained and the corresponding total wirelength was calculated using
the ISPD’08 contest evaluator. Adam could route 20 out of 25 benchmarks, RMSprop could route 15
of 25 benchamrks and mL = 4 with mF = 100 could route 22 out 25 benchmarks while mL = 8 with
mF = 100 could route 23 out of 25 benchmarks. Since the example considered is small, on comparing
the routing solution obtained from the DRL trained with aSNAQ, there was no further reduction in
wirelength compared to the A* search solution.

6.5.2 Performance comparison of aSNAQ in routing 50 nets

Next, let us consider a two-layer 8 × 8 grid with a total of 50 nets with two pins in each net. The
capacity of the edges are set to 5 and the number of blockages is set to 3. We generated a total of 30
benchmarks with the above settings using the open-sourced problem set generator [89]. Since the grid

78

CHAPTER 6. QUASI-NEWTON METHODS FOR DEEP REINFORCEMENT LEARNING

size is larger compared to the previous example, we set the maximum number of episodes max to
500 and the maximum steps kmax for each episode to 50. The discount factor is set to 0.9. A batch
size of 32 is chosen. From the previous example, we observed that mL = 8, mF = 100 performed
the best and hence in this example we evaluate the performance of the proposed aSNAQ method with
mL = 8, mF = 100 in comparison with Adam and RMSprop. For all successful solutions i.e. all nets
routed within the maximum number of episodes, zero overflow was obtained and the corresponding
total wirelength was calculated using the ISPD’08 contest evaluator. A summary of the results of the
30 benchmarks are shown in Table 6.1. The table shows the total wirelength (WL) if all pins were
successfully routed. The diff column shows the amount of wirelength reduction obtained in comparison
to the baseline (A* solution) wirelength. Overflow if any, are indicated within paranthesis next to
the wirelength. best indicates the best cumulative reward obtained and first corresponds to the
first episode when all pins are successfully routed. From the table, it can be observed that for 26 out
30 benchmarks aSNAQ was successful in routing all the pins within 500 episodes while Adam and
RMSprop were successful in only 23 out of 30 and 20 out of 30 benchmarks, respectively. Furthermore,
in most of the cases the routing solution obtained by aSNAQ had significant wirelength reduction
compared to the baseline. Also, aSNAQ could find a routing solution for all 50 pins in fewer episodes
compared to Adam and RMSprop in most cases. Figure 6.6 shows the average of all 30 benchmarks
cumulative reward over 500 episodes. It can be noted that aSNAQ is faster in attaining higher average
cumulative reward compared to Adam and RMSprop, thus confirming that aSNAQ is effective in
training the deep Q-Network and obtaining faster convergence.

Figure 6.6: Average reward over 30 benchmarks with 50 two-pin nets.

79

CHAPTER 6. QUASI-NEWTON METHODS FOR DEEP REINFORCEMENT LEARNING

Figure 6.7: Variation of loss over episodes.
Table 6.1: Summary of the results on 30 benchmarks with 50 nets.

Netlist A* Adam RMSprop aSNAQ
Num WL WL diff best first WL diff best first WL diff best first
1 390 - - 4386 - - - 4363 - 368 -22 4667 224
2 386 - - 4505 - - - 4513 - 376 -10 4610 148
3 379 - - 4234 - - - 4533 - - - 4382 -
4 369 348 -21 4690 228 350 -19 4685 151 345 -24 4699 75
5 366 362 -4 4679 100 361 -5 4681 135 369 +3 4656 458
6 352 348 -4 4691 337 344 -8 4697 222 335 -17 4701 106
7 430 - - 4053 - - - 4322 - - - 4324 -
8 398 - - 4522 - - - 4513 - 377 -21 4663 135
9 369 369 0 4669 225 347 -22 4687 153 348 -21 4693 64
10 366 359 -7 4674 106 375 +9 4660 223 357 -9 4683 67
11 379 380 +1 4660 174 380 +1 4658 262 - - 4523 -
12 351 346 -5 4692 133 351 0 4689 95 348 -3 4692 58
13 395 411 +16 4616 456 397 +2 4645 180 394 -1 4640 87
14 340 343 +3 4700 57 338 -2 4706 77 341 +1 4699 49
15 375 374 -1 4659 267 384 +9 4660 211 371 -4 4668 195
16 386 355 -31 4682 279 - - 4542 - 348 -38 4690 224
17 360 363 +3 4681 83 365 +5 4674 73 360 0 4680 56
18 343 334 -9 4705 81 333 -10 4712 84 331 -12 4714 46
19 389 385 -4 4655 164 400 +11 4615 412 377 -12 4657 239
20 337 (1) 337 0 4710 79 333 -4 4703 231 333 -4 4704 27
21 367 366 -1 4678 258 368 +1 4675 111 352 -15 4690 124
22 356 (2) 366 +10 4675 219 - - 4528 - - - 4243 -
23 384 380 -4 4654 338 382 -2 4651 227 374 -10 4662 128
24 419 (2) - - 4303 - - - 4473 - 388 -31 4632 291
25 364 (2) 368 +4 4658 149 362 -2 4682 361 365 +1 4675 159
26 367 (3) 348 -19 4648 114 342 -25 4698 101 342 -25 4696 147
27 371 (2) 356 -15 4680 197 - - 4530 - 356 -15 4682 220
28 399 (5) - - 4343 - - - 4482 - 391 -8 4640 282
29 366 (1) 360 -6 4682 104 363 -3 4677 140 362 -4 4678 96
30 387 (4) 371 -16 4669 139 380 -7 4638 390 369 -18 4666 106

80

CHAPTER 6. QUASI-NEWTON METHODS FOR DEEP REINFORCEMENT LEARNING

6.5.3 Discussions on the performance

In several non-convex optimization problems, second-order methods have shown to speed up conver-
gence and improve performance by effectively minimizing the loss or error function. The Q-learning
method, a form of temporal difference learning, uses the Q-value function that satisfies the Bellman
equation to maximize the cumulative reward. For problems with larger state-action space, DQN and
double DQN methods are used to estimate the Q-values. The loss function used in the training of these
DQNs is the mean-squared Bellman error as shown in (6.1), which is a non-convex function [91]. Thus,
it can be speculated that a second-order method such as the aSNAQ algorithm could be effective in min-
imizing the mean-squared Bellman error within fewer episodes. Furthermore, in reinforcement learning
using DQN, effective reduction of the error function results in better estimation of the Q-value and
hence better action-selection and higher cumulative reward. It is also noteworthy that in reinforcement
learning, since the training set is dynamically populated based on the state-action-reward transition, a
better action-selection leads to better training samples getting accumulated in the experience replay
buffer, which in turn results in efficient training of the DQN and better estimation of the Q-value. From
the simulation results of the benchmarks with 10 and 50 nets, we can thus say that aSNAQ was efficient
in minimizing the loss function faster, which led to faster increase in the cumulative reward. However,
from Figure 5 it can be seen that as the number of episodes increase, the average cumulative reward
of aSNAQ, Adam and RMSprop gradually merge. It can be speculated that on further continuing the
training for several more episodes, the reward and hence the total wirelength of the routing solution
obtained from DQNs trained by aSNAQ, Adam and RMSprop could all be the same. This was evident
in the simulations on the benchmarks with 10 nets when trained till 500 episodes. The wirelength of
the routing solution obtained from DQNs trained by aSNAQ, Adam and RMSprop were all the same.
However, due to time constraints, a similar study on the benchmarks with 50 nets trained for more
number of episodes could not be conducted. Nevertheless, the focus of this chapter is to emphasize on
the merit of aSNAQ, that it is able to attain high cumulative rewards and hence a better routing solution
within fewer episodes. This implies that the aSNAQ algorithm can reach a good solution much faster
than its first-order counterparts. This can be regarded as a result of better approximations obtained
through incorporating second-order information and the control heuristics.

6.6 Summary

First order gradient based methods are popular in training deep neural networks. Incorporating second-
order curvature information such as the QN and NAQ methods have shown to be efficient in several
supervised models. This study verified the feasibility and efficiency of our proposed adaptive Stochastic
Nesterov’s Accelerated Quasi-Newton (aSNAQ) method in deep reinforcement learning applications
as well. The proposed algorithm was evaluated on a deep reinforcement learning (DRL) framework
for solving global routing. To further enhance the performance, double DQN was implemented. The
results were evaluated using the ISPD’08 constest evaluator with A* search solution as the baseline
for comaprison. Also, it must be noted that the A* solution is not the global optimum since the nets
are routed sequentially. This study attempted to show that the DRL framework for global routing can
result in better solutions compared to A* and more particularly, the solutions can be obtained within
fewer episodes when the DQN is trained using aSNAQ - a second-order algorithm as when compared

81

CHAPTER 6. QUASI-NEWTON METHODS FOR DEEP REINFORCEMENT LEARNING

to popular first-order methods such as Adam and RMSProp. It was observed that the DRL framework
with double DQNs was efficient for global routing as it resulted in considerable wirelength reduction
compared to the A* search solution. The average cumulative reward plots confirmed that the aSNAQ
method can accelerate the training of DQNs compared to Adam and RMSProp, and can thus be used in
reinforcement learning type of applications as well. In future works, further analysis of the proposed
algorithm on larger netlists, nets with multipins and study on application to other problems can be
studied.

82

7

Accelerating Symmetric Rank-1 Quasi-Newton
Method

From the chapters thus far it is evident that second-order methods show faster convergence compared to
first-order methods even without acceleration techniques. And until now, we have seen the acceleration
of the BFGS quasi-Newton method with Nesterov’s gradient. In this chapter we further investigate
the feasbility of the Nesterov’s acceleration on other quasi-Newton update methods. In particular, we
focus on studying the Symmetric Rank-1 (SR1) quasi-Newton method and its acceleration using the
Nesterov’s gradient in both the deterministic and stochastic cases. This chapter is based on results
published in [92].

7.1 Introduction

Second-order methods have shown to have better convergence than first-order methods, with the
only drawbacks being high computational and storage costs. Thus, several approximations have been
proposed under Newton [40,41] and quasi-Newton [42] methods to efficiently use the second-order
information while keeping the computational load minimal. In neural network training, the Broyden-
Fletcher-Goldfarb-Shanon (BFGS) method is the most widely studied quasi-Newton method. However,
going through the evolution of quasi-Newton methods, we have other quasi-Newton update formulae
prior to the BFGS update, that have not been sufficiently explored in training neural networks. The
Symmetric Rank-1 (SR1) quasi-Newton method is one among them and though less commonly used in
training neural networks due to its insufficient performance, is known to have interesting properties
and provide good Hessian approximations when used with a trust-region approach [93,94]. Several
works in optimization [95–97] have shown SR1 quasi-Newton methods to be efficient. Recent works
such as [98, 99] have proposed sampled LSR1 (limited memory) quasi-Newton updates for machine
learning and describe efficient ways for distributed training implementation. Similar to the acceleration
of the BFGS quasi-Newton method with Nesterov’s gradient, we explore the feasibility of improving
the performance of the LSR1 quasi-Newton method using Nesterov’s gradient. We thus propose a
novel limited memory Nesterov’s accelerated symmetric rank-1 method (L-SR1-N) for training neural
networks. We show that the performance of the LSR1 quasi-Newton method can be significantly
improved using the trust-region approach and Nesterov’s acceleration, in both the deterministic and
stochastic cases.

83

CHAPTER 7. ACCELERATING SYMMETRIC RANK-1 QUASI-NEWTON METHOD

7.2 Background

Given a subset of the training dataset X ⊆ Tr with input-output pair samples (xp, op)p∈X drawn at
random from the training set Tr and error function Ep(w; xp, op) parameterized by a vector w ∈ ℝd ,
the objective function to be minimized is defined as

E(wk) =
1
b
∑

p∈Xk

Ep(wk), (7.1)

where Xk ⊂ Tr is the minibatch sample set of size b. In full batch, Xk = Tr and b = n where n = |Tr|.
In gradient based methods, the objective function E(w) is minimized by the iterative formula

wk+1 = wk + vk+1, for k = 1, 2, ..., kmax ∈ ℕ. (7.2)

where k ∈ ℕ is the iteration count and vk+1 is the update vector, which is defined for each gradient
algorithm. For instance, in the gradient descent (GD) method (see Algorithm 2.1) the update vector
vk+1 is given as

vk+1 = −�k∇E(wk). (7.3)
where �k is the learning rate that determines the step size along the direction of the gradient ∇E(wk),
and is usually fixed or set to a simple decay schedule.
The gradient descent method is simple but relatively slow in convegence and hence several accelerated
methods have be proposed in the past. The Nesterov’s Accelerated Gradient (NAG) method [20] is a
modification of the gradient descent method in which the gradient is computed at wk + �kvk instead of
wk (see Algorithm 2.3). Thus, the update vector is given by:

vk+1 = �kvk − �k∇E(wk + �kvk), (7.4)

where ∇E(wk + �kvk) is the gradient at wk + �kvk and is referred to as Nesterov’s accelerated
gradient. The momentum coefficient �k is a hyperparameter chosen in the range (0,1). Several adaptive
momentum and restart schemes have also been proposed for the choice of the momentum [19,100].

7.2.1 Second-Order Quasi-Newton Methods

While first-order methods use only the gradient or first-order derivatives in updating the iterates, second-
order methods such as the Newton’s method use both the first and second-order derivatives, thereby
ensuring better convergence than first-order methods. The update vector of second-order methods take
the form

vk+1 = −�kHk∇E(wk). (7.5)
However, computing the inverse of the Hessian matrix Hk = B−1k incurs a high computational cost,
especially for large-scale problems. For example, the computation cost of the Newton’s method is of
the order O(n3). Thus, quasi-Newton methods are widely used where the inverse of the Hessian matrix
is approximated iteratively using only the gradient of the objective function, which thus reduces the
computational cost to the order of O(n2).

84

CHAPTER 7. ACCELERATING SYMMETRIC RANK-1 QUASI-NEWTON METHOD

BFGS quasi-Newton Method

The Broyden-Fletcher-Goldfarb-Shanon (BFGS) algorithm (see Algorithm 3.2) is one of the most
popular quasi-Newton methods for unconstrained optimization. The update vector of the BFGS quasi-
Newton method is given as vk+1 = �kgk, where gk = −HBFGSk ∇E(wk) is the search direction. The
hessian matrix HBFGSk is symmetric positive definite and is iteratively approximated by the following
BFGS rank-2 update formula [1].

HBFGSk+1 =
(

I −
pkqTk
qTkpk

)

HBFGSk

(

I −
qkpTk
qTkpk

)

+
pkpTk
qTkpk

, (7.6)

where I denotes the identity matrix, and
pk = wk+1 − wk and qk = ∇E(wk+1) − ∇E(wk). (7.7)

Nesterov’s Accelerated Quasi-Newton Method

The Nesterov’s Accelerated Quasi-Newton (NAQ) [31] method (see Algorithm 3.3) introduces Nes-
terov’s acceleration to the BFGS quasi-Newton method by approximating the quadratic model of the
objective function at wk + �kvk and by incorporating Nesterov’s accelerated gradient ∇E(wk + �kvk)
in its Hessian update. The update vector of NAQ can be written as:

vk+1 = �kvk + �kgk, (7.8)
where gk = −HNAQk ∇E(wk + �kvk) is the search direction and the Hessian update equation is given as

HNAQk+1 =
(

I −
pkqTk
qTkpk

)

HNAQk

(

I −
qkpTk
qTkpk

)

+
pkpTk
qTkpk

, (7.9)
where

pk = wk+1 − (wk + �kvk) and qk = ∇E(wk+1) − ∇E(wk + �kvk). (7.10)
It is shown in [31] that NAQ has similar convergence properties to that of BFGS.

SR1 Quasi-Newton Method

While the BFGS and NAQ methods update the Hessian using rank-2 updates, the Symmetric Rank-1
(SR1) method performs rank-1 updates [1]. The Hessian update of the SR1 method is given as

HSR1k+1 = H
SR1
k +

(pk −HSR1k qk)(pk −HSR1k qk)T

(pk −HSR1k qk)Tqk
, (7.11)

where,
pk = wk+1 − wk and qk = ∇E(wk+1) − ∇E(wk). (7.12)

Unlike the BFGS or NAQ method, the Hessian generated by the SR1 update may not always be
positive definite. Also, the denominator can vanish or become zero. Thus, SR1 methods are not
popularly used in neural network training. However, SR1 methods are known to converge faster towards
the true Hessian than the BFGS method, and have computational advantages for sparse problems [93].
Furthermore, several strategies such as skipping the update or using trust region approaches have been
introduced to overcome the drawbacks of the SR1 method, resulting in them performing almost on par
with, if not better than, the BFGS method.

85

CHAPTER 7. ACCELERATING SYMMETRIC RANK-1 QUASI-NEWTON METHOD

7.2.2 Trust region approach

Line search methods and trust-region methods are two fundamental strategies used to move the current
point to a new iterate. Both generate steps with the help of a quadratic model of the objective function,
but they use the model in different ways. Line search methods use it to generate a search direction,
and then focus their efforts on finding a suitable step length �k along this direction. Trust-region
methods define a region around the current iterate within which they trust the model to be an adequate
representation of the objective function, and then choose the step to be the approximate minimizer of
the model in this region.

One of the key ingredients in a trust-region algorithm is the strategy for choosing the trust-region
radius Δk at each iteration. Given a step sk we define the ratio

�k =
E(wk) − E(wk + sk)
mk(0) − mk(sk)

(7.13)

where the numerator gives the actual reduction and the denominator is the reduction in error function
E predicted by the model function. The predicted reduction is always nonnegative since sk is obtained
by minimizing the model mk over a region that includes s = 0. This implies that if the ratio �k is
negative, the objective function at the new iterate is greater than the current value and hence the step
must be rejected. If �k is close to 1, there is good agreement between the model mk and the objective
function over this step, so it is safe to expand the trust region for the next iteration. If �k is positive but
significantly smaller than 1, we do not alter the trust region, but if it is close to zero or negative, trust
region radius is reduced for the next iteration. The algorithm to adjust the trust region radius is shown
in Algorithm 7.1.
Algorithm 7.1 adjustTR
Require: �k and trust region radius Δk
1: if �k > 0.75 then
2: if ‖sk‖ ≤ 0.8Δk then
3: Δk+1 = Δk
4: else
5: Δk+1 = 2Δk
6: end if
7: else
8: if 0.1 ≤ �k ≤ 0.75 then
9: Δk+1 = Δk
10: else
11: Δk+1 = 0.5Δk
12: end if
13: end if

Often, as the scale of the neural network model increases, the O(d2) cost of storing and updating
the Hessian matrices HSR1k , HBFGSk and HNAQk become expensive. Hence, limited memory variants
LSR1, LBFGS and LNAQ were proposed, and the respective Hessian matrices were updated using
only the last mL curvature information pairs {pi,qi}k−mL−1i=k−1 , where mL is the limited memory size and
is chosen such that mL ≪ b.

86

CHAPTER 7. ACCELERATING SYMMETRIC RANK-1 QUASI-NEWTON METHOD

7.3 Proposed L-SR1-N Method

Second-order quasi-Newton (QN) methods build an approximation of a quadratic model recursively
using the curvature information along a generated trajectory. In this section, we first show that the
Nesterov’s acceleration when applied to QN satisfies the secant condition and then show the derivation
of the proposed Nesterov Accelerated Symmetric Rank-1 Quasi-Newton Method.

Nesterov Accelerated Symmetric Rank-1 Quasi-Newton Method

Suppose that E ∶ Rd → R is continuosly differentiable and that d ∈ ℝd , then from Taylor series, the
quadratic model of the objective function at an iterate wk is given as

E(wk + d) ≈ mk(d) ≈ E(wk) + ∇E(wk)Td +
1
2
dT∇2E(wk)d. (7.14)

In order to find the minimizer dk, we equate ∇mk(d) = 0 and thus have

dk = −∇2E(wk)−1∇E(wk) = −B−1k ∇E(wk) . (7.15)

The new iterate wk+1 is given as,

wk+1 = wk − �kB−1k ∇E(wk), (7.16)

and the quadratic model at the new iterate is given as

E(wk+1 + d) ≈ mk+1(d) ≈ E(wk+1) + ∇E(wk+1)Td +
1
2
dTBk+1d , (7.17)

where �k is the step length and B−1k = Hk and its consecutive updates B−1k+1 = Hk+1 are symmetric
positive definite matrices satisfying the secant condition. The Nesterov’s acceleration approximates
the quadratic model at wk + �kvk instead of the iterate at wk. Here vk = wk − wk−1 and �k is the
momentum coefficient in the range (0, 1). Thus we have the new iterate wk+1 given as,

wk+1 = wk + �kvk − �kB−1k ∇E(wk + �kvk), (7.18)

= wk + �kvk + �kdk. (7.19)
In order to show that the Nesterov accelerated updates also satisfy the secant condition, we require

that the gradient of mk+1 should match the gradient of the objective function at the last two iterates
(wk + �kvk) and wk+1. In other words, we impose the following two requirements on Bk+1,

∇mk+1|d=0 = ∇E(wk+1 + d)|d=0 = ∇E(wk+1), (7.20)

∇mk+1|d=−�kdk = ∇E(wk+1 + d)|d=−�kdk = ∇E(wk+1 − �kdk) = ∇E(wk + �kvk). (7.21)
From (7.17),

∇mk+1(d) = ∇E(wk+1) + Bk+1d. (7.22)
Substituting d = 0 in (7.22), the condition in (7.20) is satisfied. From (7.21) and substituting

d = −�kdk in (7.22), we have

∇E(wk + �kvk) = ∇E(wk+1) − �kBk+1dk. (7.23)

87

CHAPTER 7. ACCELERATING SYMMETRIC RANK-1 QUASI-NEWTON METHOD

Substituting for �kdk from (7.19) in (7.23), we get
∇E(wk + �kvk) = ∇E(wk+1) − Bk+1(wk+1 − (wk + �kvk)). (7.24)

On rearranging the terms, we have the secant condition
yk = Bk+1sk, (7.25)

where,
yk = ∇E(wk+1) − ∇E(wk + �kvk) and sk = wk+1 − (wk + �kvk) = �kdk. (7.26)

We have thus shown that the Nesterov accelerated QN update satisfies the secant condition. The
update equation of Bk+1 for SR1-N can be derived similarly to that of the classical SR1 update [1]. The
secant condition requires Bk to be updated with a symmetric matrix such that Bk+1 is also symmetric
and satisfies the secant condition. The update of Bk+1 is defined using a symmetric-rank-1 matrix
formed by an arbitrary vector uuT is given as

Bk+1 = Bk + �uuT, (7.27)
where � and u are chosen such that they satisfy the secant condtion in (7.25). Substituting (7.27) in
(7.25), we get

yk = Bksk + (�uTsk)u. (7.28)
Since (�uTsk) is a scalar, we can deduce u a scalar multiple of yk − Bksk and thus have

(yk − Bksk) = ��2[sTk(yk − Bksk)](yk − Bksk), (7.29)
where

� = sign[sTk(yk − Bksk)] and � = ±|[sTk(yk − Bksk)]|
1∕2 . (7.30)

Thus the proposed Nesterov accelerated symmetric rank-1(L-SR1-N) update is given as

Bk+1 = Bk +
(yk − Bksk)(yk − Bksk)T

(yk − Bksk)Tsk
. (7.31)

Note that the Hessian update is performed only if the below condition in (7.32) is satisfied, otherwise
Bk+1 = Bk.

|sTk(yk − Bksk)| ≥ � ‖sk‖ ‖yk − Bksk‖ . (7.32)
By applying the Sherman-Morrison-Woodbury Formula [1], we can find B−1k+1 = Hk+1 as

Hk+1 = Hk +
(sk −Hkyk)(sk −Hkyk)T

(sk −Hkyk)Tyk
, (7.33)

where,
yk = ∇E(wk+1) − ∇E(wk + �kvk) and sk = wk+1 − (wk + �kvk) = �kdk. (7.34)

The proposed algorithm is as shown in Algorithm 7.2. We implement the proposed method in
its limited memory form, where the Hessian is updated using the recent mL curvature information
pairs satisfying (7.32). Here mL denotes the limited memory size and is chosen such that mL ≪ b.
The proposed method uses the trust-region approach where the subproblem is solved using the CG-
Steihaug method [1] as shown in Algorithm 7.3. Also note that the proposed L-SR1-N has two gradient

88

CHAPTER 7. ACCELERATING SYMMETRIC RANK-1 QUASI-NEWTON METHOD

computations per iteration. The Nesterov’s gradient ∇E(wk + �kvk) can be approximated [33, 101] as
a linear combination of past gradients as shown below.

∇E(wk + �kvk) ≈ (1 + �k)∇E(wk) − �k∇E(wk−1). (7.35)

Thus we have the momentum accelerated symmetric rank-1 (L-MoSR1) method by approximating the
Nesterov’s gradient in L-SR1-N.
Algorithm 7.2 L-SR1-N Method
1: while ‖∇E(wk)‖ > � and k < kmax do
2: Determine �k
3: Compute ∇E(wk + �kvk)
4: Find sk by CG-Steihaug subproblem solver in Algorithm (7.3)
5: Compute �k = E(wk+�kvk)−E(wk+�kvk+sk)

mk(0)−mk(sk)6: if �k ≥ � then
7: Set vk+1 = �kvk + sk,wk+1 = wk + vk+1
8: else
9: Set vk+1 = vk, wk+1 = wk, reset �k
10: end if
11: Δk+1 = adjustTR(Δk, �k)
12: Compute yk = ∇E(wk+1) − ∇E(wk + �kvk) + �sk
13: Update (Sk,Yk) buffer with (sk, yk) if (7.32) is satisfied
14: end while

Algorithm 7.3 CG-Steihaug
Require: Gradient ∇E(wk + �kvk), tolerance �k > 0, and trust-region radius Δk.
Initialize: Set z0 = 0, r0 = ∇E(wk + �kvk), d0 = −r0 = −∇E(wk + �kvk)
1: if then‖r0‖ < �k
2: return sk = z0 = 0
3: end if
4: for i = 0, 1, 2, ... do
5: if dTi Bkdi ≤ 0 then
6: Find � such that sk = zi + �di minimizes (7.42) and satisfies ‖sk‖ = Δk
7: return sk
8: end if
9: Set �i = rTi ri

dTi Bkdi10: Set zi+1 = zi + �idi
11: if ‖zi+1‖ ≥ Δk then
12: Find � ≥ 0 such that sk = zi + �di satisfies ‖sk‖ = Δk
13: return sk
14: end if
15: Set ri+1 = ri + �iBkdi
16: if ‖ri+1‖ < �k then
17: return sk = zi+1
18: end if
19: Set �i+1 = rTi ri+1

rTi ri20: Set di+1 = −ri+1 + �i+1di
21: end for

89

CHAPTER 7. ACCELERATING SYMMETRIC RANK-1 QUASI-NEWTON METHOD

7.4 Convergence Analysis

In this section we discuss the convergence proof of the proposed Nesterov accelerated Symmetric Rank-
1 (L-SR1-N) algorithm in its limited memory form. As mentioned earlier, the Nesterov’s acceleration
approximates the quadratic model at wk + �kvk instead of the iterate at wk. For ease of representation,
we write wk + �kvk = ŵk ∀ k = 1, 2, ..., kmax ∈ ℕ. In the limited memory scheme, the Hessian matrix
can be implicitly constructed using the recent mL number of curvature information pairs {si, yi}k−mL−1i=k−1 .
At a given iteration k, we define matrices Sk and Yk of dimensions d × mL as

Sk = [sk−1, sk−2, ..., sk−mL−1] and Yk = [yk−1, yk−2, ..., yk−mL−1], (7.36)

where the curvature pairs {si, yi}k−mL−1i=k−1 are each vectors of dimensions d × 1. The Hessian approxima-
tion in (7.31) can be expressed in its compact representation form [102] as

Bk = B0 + (Yk − B0Sk)(Lk + Dk + LTk − S
T
kB0Sk)

−1(Yk − B0Sk), (7.37)

where B0 is the initial d × d Hessian matrix, Lk is a mL × mL lower triangular matrix and Dk is a
mL × mL diagonal matrix as given below,

B0 = kI,

(Lk)i,j =
⎧

⎪

⎨

⎪

⎩

sTi yj if i > j,

0 otherwise,

Dk = diag [STkYk]. (7.38)
Let
 be the level set such that
 = {w ∈ ℝd ∶ E(w) ≤ E(w0)} and {sk} ∀ k = 1, 2, ..., kmax ∈ ℕ,

denote the sequence generated by the explicit trust-region algorithm where Δk be the trust-region
radius of the successful update step. We choose k = 0. Since the curvature information pairs
(sk, yk) given by (7.34) are stored in Sk and Yk only if they satisfy the condition in (7.32), the matrix
Mk = (Lk + Dk + LTk − S

T
kB0Sk) is invertible and positive semi-definite.

Assumption 7.4.1. The sequence of iterates wk and ŵk ∀ k = 1, 2, ..., kmax ∈ ℕ remains in the closed
and bounded set
 on which the objective function is twice continuously differentiable and has Lipschitz
continuous gradient, i.e., there exists a constant L > 0 such that

‖∇E(wk+1) − ∇E(ŵk)‖ ≤ L‖wk+1 − ŵk‖ ∀ wk+1, ŵk ∈ ℝd . (7.39)

Assumption 7.4.2. The Hessian matrix is bounded and well-defined, .i.e, there exists constants � and
M , such that

� ≤ ‖Bk‖ ≤M ∀ k = 1, 2, ..., kmax ∈ ℕ. (7.40)
and for each iteration k

|sTk(yk − Bksk)| ≥ � ‖sk‖ ‖yk − Bksk‖. (7.41)

90

CHAPTER 7. ACCELERATING SYMMETRIC RANK-1 QUASI-NEWTON METHOD

Assumption 7.4.3. Let Bk be any n × n symmetric matrix and sk be an optimal solution to the trust
region subproblem,

min
d

mk(d) = E(ŵk) + dT∇E(ŵk) +
1
2
dTBkd, (7.42)

where ŵk + d lies in the trust region. Then for all k ≥ 0,

|

|

|

∇E(ŵk)Tsk +
1
2
sTkBksk

|

|

|

≥ 1
2
|

|

|

|

|

|

∇E(ŵk)
|

|

|

|

|

|

min

{

Δk,
‖∇E(ŵk)‖

‖Bk‖

}

. (7.43)

This assumption ensures that the subproblem solved by trust-region results in a sufficiently optimal
solution at every iteration. The proof for this assumption can be shown similar to the trust-region proof
by Powell.
Lemma 7.4.1. If Assumptions 7.4.1 to 7.4.3 hold, and sk be an optimal solution to the trust region
subproblem given in (7.42), and if the initial k is bounded (i.e., 0 ≤ k ≤ ̄k), then for all k ≥ 0, the
Hessian update given by Algorithm 7.2 and (7.27) is bounded.

Proof. We begin with the proof for the general case [103], where the Hessian is bounded by

‖B(j)k ‖ ≤
(

1 + 1
�

)j
k +

[

(

1 + 1
�

)j
− 1

]

M. (7.44)

The proof for (7.44) is given by mathematical induction. Let mL be the limited memory size and
(sk,j , yk,j) be the curvature information pairs given by (7.34) at the ktℎ iteration for j = 1, 2, ..., mL.
For j = 0, we can see that (7.44) holds true. Let us assume that (7.44) holds true for some j > 0. Thus
for j + 1 we have

B(j+1)k = B(j)k +

(

yk,j+1 − B
(j)
k sk,j+1

)(

yk,j+1 − B
(j)
k sk,j+1

)T

(

yk,j+1 − B
(j)
k sk,j+1

)Tsk,j+1
(7.45)

|

|

|

|

|

|

B(j+1)k
|

|

|

|

|

|

≤ |

|

|

|

|

|

B(j)k
|

|

|

|

|

|

+
|

|

|

|

|

|

|

|

|

|

(

yk,j+1 − B
(j)
k sk,j+1

)(

yk,j+1 − B
(j)
k sk,j+1

)T

(

yk,j+1 − B
(j)
k sk,j+1

)Tsk,j+1

|

|

|

|

|

|

|

|

|

|

(7.46)

≤ |

|

|

|

|

|

B(j)k
|

|

|

|

|

|

+
|

|

|

|

|

|

(

yk,j+1 − B
(j)
k sk,j+1

)(

yk,j+1 − B
(j)
k sk,j+1

)T
|

|

|

|

|

|

� ||
|

|

|

|

(

yk,j+1 − B
(j)
k sk,j+1

)

|

|

|

|

|

|

|

|

|

|

|

|

sk,j+1
|

|

|

|

|

|

(7.47)

≤ |

|

|

|

|

|

B(j)k
|

|

|

|

|

|

+
|

|

|

|

|

|

(

yk,j+1 − B
(j)
k sk,j+1

)

|

|

|

|

|

|

� ||
|

|

|

|

sk,j+1
|

|

|

|

|

|

(7.48)

≤ |

|

|

|

|

|

B(j)k
|

|

|

|

|

|

+
|

|

|

|

|

|

yk,j+1
|

|

|

|

|

|

� ||
|

|

|

|

sk,j+1
|

|

|

|

|

|

+
|

|

|

|

|

|

B(j)k sk,j+1
|

|

|

|

|

|

� ||
|

|

|

|

sk,j+1
|

|

|

|

|

|

(7.49)

≤ |

|

|

|

|

|

B(j)k
|

|

|

|

|

|

+
|

|

|

|

|

|

yk,j+1
|

|

|

|

|

|

� ||
|

|

|

|

sk,j+1
|

|

|

|

|

|

+
|

|

|

|

|

|

B(j)k
|

|

|

|

|

|

�
(7.50)

≤
(

1 + 1
�

)

|

|

|

|

|

|

B(j)k
|

|

|

|

|

|

+ M
�

(7.51)

91

CHAPTER 7. ACCELERATING SYMMETRIC RANK-1 QUASI-NEWTON METHOD

≤
(

1 + 1
�

)

[

(

1 + 1
�

)j
k +

[(

1 + 1
�

)j
− 1

]

M

]

+ M
�

(7.52)

|

|

|

|

|

|

B(j+1)k
|

|

|

|

|

|

≤
(

1 + 1
�

)j+1
k +

[

(

1 + 1
�

)j+1
− 1

]

M (7.53)

Since we use the limited memory scheme, Bk+1 = B(mL)k , where mL is the limited memory size.
Therefore, the Hessian approximation at the ktℎ iteration satisfies

|

|

|

|

|

|

Bk+1
|

|

|

|

|

|

≤
(

1 + 1
�

)mL
k +

[

(

1 + 1
�

)mL
− 1

]

M (7.54)

We choose k = 0 as it removes the choice of the hyperparameter for the initial Hessian B(0)k = kI
and also ensures that the subproblem solver CG algorithm (Algorithm 7.3) terminates in at most mL
iterations [98]. Thus the Hessian approximation at the ktℎ iteration satisfies (7.55) and is still bounded.

|

|

|

|

|

|

Bk+1
|

|

|

|

|

|

≤

[

(

1 + 1
�

)mL
− 1

]

M (7.55)

This completes the inductive proof.
Theorem 7.4.1. Given a level set
 = {w ∈ ℝd ∶ E(w) ≤ E(w0)} that is bounded, let {wk} be the
sequence of iterates generated by Algorithm 7.2. If Assumptions 7.4.1 to 7.4.3 holds true, then we have,

lim
k→∞

‖∇E(wk)‖ = 0. (7.56)
Proof. From the derivation of the proposed L-SR1-N algorithm, it is shown that the Nesterov’s
acceleration to quasi-Newton method satisfies the secant condition. The proposed algorithm ensures
the definiteness of the Hessian update as the curvature pairs used in the Hessian update satisfies (7.32)
for all k. The sequence of updates are generated by solving using the trust region method where sk is
the optimal solution to the subproblem in (7.42). From Theorem 2.2 in [104], it can be shown that
the updates made by the trust region method converges to a stationary point. Since Bk is shown to be
bounded (Lemma 7.4.1), it follows from that theorem that as k→∞, wk converges to a point such that
‖∇E(wk)‖ = 0.

7.5 Simulation Results

We evaluate the performance of the proposed Nesterov accelerated symmetric rank-1 quasi-Newton
(L-SR1-N) method in its limited memory form in comparison to conventional first-order methods and
second-order methods. We illustrate the performances in both full batch and stochastic/mini-batch
setting. The hyperparameters are set to their default values. The momentum coefficient �k is set to
0.9 in NAG and 0.85 in oLNAQ [37]. For L-NAQ [32], L-MoQ [28], and the proposed methods, the
momentum coefficient �k is set adaptively. The adaptive �k is obtained from the following equations,
where �k = 1 and � = 10−6.

�k = �k(1 − �k)∕(�2k + �k+1), (7.57)
�2k+1 = (1 − �k+1)�

2
k + ��k+1. (7.58)

92

CHAPTER 7. ACCELERATING SYMMETRIC RANK-1 QUASI-NEWTON METHOD

7.5.1 Results of the Levy Function Approximation Problem

Consider the following Levy function approximation problem to be modeled by a neural network.

f (x1… xp) =
�
p

{

p−1
∑

i=1
[(xi − 1)2(1 + 10 sin

2(�xi+1))]

+ 10 sin2(�x1) + (xp − 1)2
}

, xi ∈ [−4, 4],∀i. (7.59)
We begin with evaluating the performance of the proposed L-SR1-N and L-MoSR1 in the deterministic
(full batch) case, using the Levy function (7.59) example where p = 5. Therefore the inputs to the
neural network is {x1, x2, ..., x5}. We use a single hidden layer with 50 hidden neurons. The neural
network architecture is thus 5 − 50 − 1. We terminate the training at kmax = 10,000, and set � = 10−6
and mL = 10. Sigmoid and linear activation functions are used for the hidden and output layers,
respectively. Mean squared error function is used. The number of parameters is d = 351. Note that
we use full batch for the training in this example and the number of training samples is n = 5000.
Figure 7.1 shows the average results of 30 independent trials. The results confirm that the proposed
L-SR1-N and L-MoSR1 have better performance compared to the first-order methods as well as the
conventional LSR1 and rank-2 LBFGS quasi-Newton method. Furthermore, it can be observed that
incorporating the Nesterov’s gradient in LSR1 has significantly improved the performance, bringing
it almost equivalent to the rank-2 Nesterov accelerated L-NAQ and momentum accelerated L-MoQ
methods. Thus we can confirm that the limited memory symmetric rank-1 quasi-Newton method can
be significantly accelerated using the Nesterov’s gradient. From the iterations vs. training error plot,
we can observe that the L-SR1-N and L-MoSR1 are almost similar in performance. This verifies
that the approximation applied to L-SR1-N in L-MoSR1 is valid, and has an advantage in terms of

Figure 7.1: Average results on levy function approximation problem with mL = 10 (full batch).

93

CHAPTER 7. ACCELERATING SYMMETRIC RANK-1 QUASI-NEWTON METHOD

computation wall time. This can be observed in the time vs. training error plot, where the L-MoSR1
method converges much faster compared to the other first and second-order methods under comparison.

7.5.2 Results of MNIST Image Classification Problem

In large scale optimization problems, owing to the massive amount of data and large number of param-
eters of the neural network model, training the neural network using full batch is not feasible. Hence a
stochastic approach is more desirable where the neural networks are trained using a relatively small
subset of the training data, thereby significantly reducing the computational and memory requirements.
However, getting second-order methods to work in a stochastic setting is a challenging task. A common
problem in stochastic/mini-batch training is the sampling noise that arises due to the gradients being
estimated on different mini-batch samples at each iteration. In this section, we evaluate the performance
of the proposed L-SR1-N and L-MoSR1 methods in the stochastic/mini-batch setting. We use the
MNIST handwritten digit image classification problem [57] for the evaluation. The MNIST dataset
consists of 50,000 train and 10,000 test samples of 28× 28 pixel images of handwritten digits from 0 to
9 that needs to be classified. We evaluate the performance of this image classification task on a simple
fully connected neural network and LeNet-5 architectures. In a stochastic setting, the conventional
LBFGS method is known to be affected by sampling noise and to alleviate this issue, [44] proposed
the oLBFGS method that computes two gradients per iteration. We thus compare the performance of
our proposed method against both the naive stochastic LBFGS (denoted here as oLBFGS-1) and the
oLBFGS proposed in [44].

Results of MNIST on Fully Connected Neural Networks

We first consider a simple fully connected neural network with two hidden layers with 100 and 50
hidden neurons respectively. Thus, the neural network architecture used is 784 − 100 − 50 − 10. The
hidden layers use the ReLU activation function and the loss function used is the softmax cross-entropy
loss function. Figure 7.2 shows the performance comparison with a batch size b = 128 and limited
memory size of mL = 8. It can be observed that the second-order quasi-Newton methods show fast
convergence compared to first-order methods in the first 500 iterations. From the results we can see that
even though the stochastic L-SR1-N (oL-SR1-N) and stochastic MoSR1 (oL-MoSR1) does not perform
the best on the small network, it has significantly improved the performance of the stochastic LSR1
(oLSR1) method, and performs better than the oLBFGS-1 method. Since our aim is to investigate
the effectiveness of the Nesterov’s acceleration on SR1, we focus on the performance comparison
of oLBFGS-1, oLSR1 and the proposed oL-SR1-N and oL-MoSR1 methods. As seen from Figure
7.2, oLBFGS-1, oLSR1 does not further improve the test accuracy or test loss after 1000 iterations.
However, incorporating Nesterov’s acceleration significantly improved the performance compared to
the conventional oL-SR1 and oLBFGS-1, thus confirming the effectiveness of Nesterov’s acceleration
on LSR1 in the stochastic setting.

Results of MNIST on LeNet-5 Architecture

Next, we evaluate the performance of the proposed methods on a bigger network with convolutional
layers. The LeNet-5 architecture consists of two sets of convolutional and average pooling layers,

94

CHAPTER 7. ACCELERATING SYMMETRIC RANK-1 QUASI-NEWTON METHOD

Figure 7.2: Results of MNIST on fully connected neural network with b = 128 and mL = 8.

followed by a flattening convolutional layer, then two fully-connected layers and finally a softmax
classifier. The number of parameters is d = 61,706. Figure 7.3 shows the performance comparison
when trained with a batch size of b = 256 and limited memory mL = 8. From the results, we can
observe that oLNAQ performs the best. However, the proposed oL-SR1-N method performs better
compared to both the first-order SGD, NAG, Adam and second-order oLSR1, oLBFGS-1 and oLBFGS
methods. It can be confirmed that incorporating the Nesterov’s gradient can accelerate and significantly
improve the performance of the conventional LSR1 method, even in the stochastic setting.

Figure 7.3: Results of MNIST on LeNet-5 architecture with b = 256 and mL = 8.

95

CHAPTER 7. ACCELERATING SYMMETRIC RANK-1 QUASI-NEWTON METHOD

7.6 Summary

Acceleration techniques such as the Nesterov’s acceleration have shown to speed up convergence
as in the cases of NAG accelerating GD and NAQ accelerating the BFGS methods. Second-order
methods are said to achieve better convergence compared to first-order methods and are more suitable
for parallel and distributed implementations. While the BFGS quasi-Newton method is the most
extensively studied method in the context of deep learning and neural networks, there are other
methods in the quasi-Newton family, such as the Symmetric Rank-1 (SR1), which are shown to be
effective in optimization but not extensively studied in the context of neural networks. SR1 methods
converge towards the true Hessian faster than BFGS and have computational advantages for sparse or
partially separable problems [93]. Thus, investigating acceleration techniques on the SR1 method is
significant. The Nesterov’s acceleration is shown to accelerate convergence as seen in the case of NAQ,
improving the performance of BFGS. We investigate whether the Nesterov’s acceleration can improve
the performance of other quasi-Newton methods such as SR1 and compare the performance among
second-order Nesterov’s accelerated variants. To this end, we have introduced a new limited memory
Nesterov accelerated symmetric rank-1 (L-SR1-N) method for training neural networks. We compared
the results with LNAQ to give a sense of comparison of how the Nesterov’s acceleration affects the two
methods of the quasi-Newton family, namely BFGS and SR1. The results confirm that the performance
of the LSR1 method can be significantly improved in both the full batch and the stochastic settings
by introducing Nesterov’s accelerated gradient. Furthermore, it can be observed that the proposed
L-SR1-N method is competitive with LNAQ and is substantially better than the first-order methods
and second-order LSR1 and LBFGS method. It is shown both theoretically and empirically that the
proposed L-SR1-N converges to a stationary point. From the results, it can also be noted that, unlike
in the full batch example, the performance of oL-SR1-N and oL-MoSR1 do not correlate well in the
stochastic setting. This can be regarded as due to the sampling noise, similar to that of oLBFGS-1 and
oLBFGS. In the stochastic setting, the curvature information vector yk of oL-MoSR1 is approximated
based on the gradients computed on different mini-batch samples. This could introduce sampling noise
and hence result in oL-MoSR1 not being a close approximation of the stochastic oL-SR1-N method.
Future works could involve solving the sampling noise problem with multi-batch strategies such as
in [105], and further improving the performance of L-SR1-N. Furthermore, a detailed study on larger
networks and problems with different hyperparameter settings could test the limits of the proposed
method.

96

8

Conclusion

8.1 Summary

This thesis presented the study of stochastic second-order quasi-Newton methods with momentum
and Nesterov’s acceleration for training neural networks. As a precursor, the thesis discussed the
fundamentals of first and second-order methods in the context of training neural networks in detail
under full batch training strategies, with performance evaluations on problems that exhibited high
non-linearity and non-smoothness. In full batch training approach where at each iteration the weight
updates are based on the function and gradient evaluations over the entire training set, we could confirm
that that second order methods have faster convergence compared to first order methods. However the
per-iteration time of second order methods is still larger than that of first order methods. Nevertheless,
since first order methods require several more passes (epochs or iterations) over the dataset, second
order methods still show better advantage, especially in terms of escaping local minima and saddle
points. Moreover incorporating the momentum term in second order methods showed promising
acceleration.

To meet with the growing demand for large-scale optimization, a family of new stochastic acceler-
ated quasi-Newton methods have been proposed in this thesis. Getting quasi-Newton methods to work
in stochastic settings has been challenging and suitable modifications and extensions were proposed and
discussed. An extension of the momentum and Nesterov’s accelerated BFGS quasi-Newton method in
stochastic setting in full and limited memory was proposed. The proposed methods were evaluated in
comparison with the oBFGS method and the results showed better performance. The proposed methods
were also theoretically shown to converge at a linear rate and computation cost to be comparable to the
oBFGS method.

We further extended the study of accelerated stochastic quasi-Newton methods to training recurrent
neural networks. An adaptive stochastic Nesterov’s Accelerated Quasi-Newton (aSNAQ) method was
proposed with the focus of solving the vanishing exploding gradient issue. The proposed method used
a simple adaptive step size and momentum selection schemes. Furthermore, direction normalization,
weight aggregation and accumulated Fisher Information Matrix (aFIM) for weight updates and Hessian
calculation was used. This method showed improved performance in training recurrent neural networks.
The proposed method was shown to converge with linear rate. We further adapted the aSNAQ method
to deep Q-networks. The robustness of the aSNAQ method was confirmed with an example of VLSI
global routing problem using deep reinforcement learning framework.

97

CHAPTER 8. CONCLUSION

Finally we confirmed the acceleration of the symmetric rank-1 method using Nesterov’s gradient.
The performance of the proposed method significantly improved the performance of the conventional
symmetric rank-1 method. Also, the convergence guarantee with a trust region approach was presented
for the proposed method.

8.2 Limitations and Future Work

Training of neural networks are currently dominated by first-order methods due to their simplicity
and low computational complexity. However, first-order methods show slow convergence on highly
non-linear problems. Second-order quasi-Newton methods exhibit fast convergence despite their high
computational cost.

It must be noted that though optimization methods play an important role in training neural networks,
it alone may not be sufficient to improve the overall performance of a neural network model. The overall
performance of a neural network model is dependent on several factors such as the network architecture,
regularization techniques such as batch normalization and dropout, optimizer, weight initialization,
hyperparameters selected, etc. However, since this thesis focused on improving the performance of
neural networks by accelerating the convergence rate of the optimization algorithm used in training
neural networks, we showed the performance evaluations on simple datasets and small neural network
structures without much fine tuning. Further evaluations on larger problems and networks could test
the limits of the proposed methods.

Although this study showed that the proposed stochastic quasi-Newton methods in limited memory
forms have moderate computational cost in the order of O(d) which are comparable to first-order
methods, as the number of parameter of the network increases, this cost can still be expensive. However,
it is also notable that second order methods are more compatible for parallel and distributed implemen-
tations as there are several independent sections of the algorithms itself that can be implemented in
parallel, thus reducing the per-iteration time. Thus some of the future research directions include that of
extending the proposed accelerated quasi-Newton methods to parallel and distributed implementations
similar to the works in [106,107]. Also further efficient GPU programming can bring down the CPU
time thus making it efficient for larger neural network models such as transformers or GPT. Efficient
techniques that reduce overheads such as [108,109] can be incorporated along with the momentum
and Nesterov’s acceleration.

Furthermore, though the stochastic momentum accelerated methods introduced in Chapters 4 and
7 were proposed to reduce the cost of computing two gradients per iteration, in stochastic training it
may be subject to stochastic noise as the curvature information is estimated from gradients computed
on different mini-batch samples. Future works could involve solving the sampling noise problem with
overlapping and multi-batch strategies such as in [105]. These strategies can also be easily extended to
distributed settings.

In addition to the above, though this thesis discusses the accelerated quasi-Newton methods in the
context of neural network training, it is not limited to just neural networks but can also be explored in
various other fields and applications where optimization algorithms can be applied.

98

A

Appendix

A.1 Two-loop recursion

Algorithm A.1 Direction Update - Two-loop Recursion
Require: current gradient ∇E(�k), memory size m, curvature pair (�k−i, k−i)

∀i = 1, 2, ..., min(k − 1, m) where �k is the difference of current and previous weight vec-
tor and k is the difference of current and previous gradient vector

1: �k = −∇E(�k)
2: for i ∶= 1, 2, ...,min(m, k − 1) do
3: �i = (�Tk−i�k)∕(�

T
k−ik−i)

4: �k = �k − �ik−i
5: end for
6: if k > 1 then
7: �k = �k(�Tk k∕

T
k k)

8: end if
9: for i ∶ k − min(m, (k − 1)),… , k − 1, k do
10: � = (Ti �k)∕(

T
i �i)

11: �k = �k − (�i − �)�i
12: end for
13: return �k

A.2 Sherman Morrison Woodbury Formula

In linear algebra, the Sherman-Morrison formula [110] is used to compute the inverse of the sum of
an invertible matrix A and outer product of the vectors u and vT. The formula states that suppose
matrix A ∈ Rn×n is an invertible matrix and vectors u and v ∈ Rn, then A + uvT is invertible iif
1 + vTA−1u ≠ 0. In other words, it gives the inverse of the rank-1 modification of the matrix A as
shown below:

(

A + uvT
)−1 = A−1 − A

−1uvTA−1
1 + vTA−1u

(A.1)
The Sherman-Morrison-Woodbury formula [111] is the generalization to a rank-k modification of the
matrix A as shown below:

(

A + UVT
)−1 = A−1 − A−1U

(

I + VTA−1U
)−1VTA−1 (A.2)

99

B

List of Publications

A. Academic article related to the qualification

1. S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, T. Kamio, H. Asai, "Accelerating Symmet-
ric Rank-1 Quasi-Newton Method with Nesterov’s Gradient for Training Neural Networks",
Algorithms 2022, 15(1), 6; [Link]

2. S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, T. Kamio, H. Asai, "A Nesterov’s Accelerated
quasi-Newton method for Global Routing using Deep Reinforcement Learning", NOLTA Journal,
Vol. 12(3), pp. 323-335, IEICE, Jul 2021 (Invited Paper) [Link]

3. S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, H. Asai, "aSNAQ: An Adaptive Stochastic
Nesterov Accelerated Quasi Newton Method for Training RNNs", NOLTA Journal, Vol.E11-N,
No.4, pp. 409-421, IEICE Oct. 2020 (Invited Paper) [Link]

B. Academic article related to dissertation (including unpublished paper or
proceeding) other than listed above

1. S. Indrapriyadarsini, H. Ninomiya, M. Nishimura, "On the Convergence of Stochastic Acceler-
ated quasi-Newton Methods for Neural Networks", 2022 (under review).

2. S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, T. Kamio, H. Asai, "A Stochastic Momentum
Accelerated Quasi-Newton Method for Neural Networks (Student Abstract)", Proceedings of the
36th AAAI Conference on Artificial Intelligence, Feb 2022. [Link]

3. S. Indrapriyadarsini, H. Ninomiya, T. Kamio, H. Asai, "On the Practical Robustness of the
Nesterov’s Accelerated Quasi-Newton Method", Proceedings of the 36th AAAI Conference on
Artificial Intelligence, Feb 2022 [Link]

4. S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, T. Kamio, H. Asai, "A modified limited mem-
ory Nesterov’s accelerated quasi-Newton", NOLTAソサイエティ大会, IEICE, Jun 2021.
[Link]

5. S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, T. Kamio, H. Asai, "A Nesterov’s Accelerated
quasi-Newton method for Global Routing using Deep Reinforcement Learning," International
Symposium on Nonlinear Theory and its Applications, IEICE, pp. 251-254, Nov 2020 (Student
Paper Award) [Link]

100

https://www.mdpi.com/1999-4893/15/1/6
https://www.jstage.jst.go.jp/article/nolta/12/3/12_323/_article
https://www.jstage.jst.go.jp/article/nolta/11/4/11_409/_article
https://www.aaai.org/AAAI22Papers/SA-00366-IndrapriyadarsiniS.pdf
https://www.aaai.org/AAAI22Papers/DC-00175-IndrapriyadarsiniS.pdf
https://arxiv.org/abs/2112.01327
https://arxiv.org/abs/2010.09465

APPENDIX B. LIST OF PUBLICATIONS

6. S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, T. Kamio, H. Asai, "A Neural Network Ap-
proach to Analog Circuit Design Optimization Using Nesterov’s Accelerated Quasi-Newton
Method", Proc. International Symposium on Circuits and Systems (ISCAS), IEEE 2020 [Link]

7. S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, T. Kamio, H. Asai, "Neural Networkを用い
たAnalog回路設計",総合大会, IEICE, March 2020

8. S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, H. Asai, "An Adaptive Stochastic Nesterov
Accelerated Quasi Newton Method for Training RNNs,” International Symposium on Nonlinear
Theory and its Applications, IEICE, pp. 208-211, Dec 2019 (Best Student Paper Award) [Link]

9. S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, H. Asai, "A Stochastic Quasi-Newton Method
with Nesterov’s Accelerated Gradient", Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, ECML-PKDD, LNCS vol.11906, pp. 743-760, Springer,
Cham, Sept 2019 [Link]

10. S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, H. Asai, "Implementation of a modified Nes-
terov’s Accelerated quasi-Newton method on Tensorflow" Proc. 17th IEEE International Con-
ference on Machine Learning and Applications (ICMLA). IEEE, 2018. [Link]

C. Other articles

1. S. Yasuda, S. Indrapriyadarsini, H. Ninomiya, T. Kamio, H. Asai, "addHessian: Combining
quasi-Newton method with first-order method for neural network training", NOLTA Journal, Vol
13(2), pp. 361-366, IEICE, April 2022 [Link]

2. S. Mahboubi, R. Yamatomi, S. Indrapriyadarsini, H. Ninomiya, H. Asai, "On the study of
Memory-Less quasi-Newton Method with Momentum Term for Neural Network Training",
NOLTA Journal, Vol 13(2), pp. 271-276, IEICE, April 2022 [Link]

3. S. Mahboubi, S. Indrapriyadarsini, H. Ninomiya, H. Asai, "Momentum Acceleration of quasi-
Newton based Optimization Technique for Neural Network Training", NOLTA Journal, Vol.
12(3), pp. 554-574, IEICE, Jul2021 [Link]

4. S. Mahboubi, S. Indrapriyadarsini, H. Ninomiya, H. Asai, "A Robust quasi-Newton Training
with Adaptive Momentum for Microwave Circuit Models in Neural Networks", Journal of Signal
Processing 24.1 (2020): 11-17. [Link]

5. S. Yasuda, S. Mahboubi, S. Indrapriyadarsini, H. Ninomiya, H. Asai, "A Stochastic Variance Re-
duced Nesterov’s Accelerated Quasi-NewtonMethod" Proc. 18th IEEE International Conference
on Machine Learning and Applications (ICMLA). IEEE, 2019 [Link]

6. S. Mahboubi, S. Indrapriyadarsini, H. Ninomiya, H. Asai, "Momentum acceleration of quasi-
Newton Training for Neural Networks", 16th Pacific Rim International Conference on Artificial
Intelligence, PRICAI 2019, (pp. 268-281). Springer, Cham. [Link]

101

https://ieeexplore.ieee.org/document/9181152
https://arxiv.org/abs/1909.03620
https://link.springer.com/chapter/10.1007/978-3-030-46150-8_43
https://ieeexplore.ieee.org/document/8614210
https://www.jstage.jst.go.jp/article/nolta/13/2/13_361/_article/-char/en
https://www.jstage.jst.go.jp/article/nolta/13/2/13_271/_article/-char/en
https://www.jstage.jst.go.jp/article/nolta/12/3/12_554/_article
https://www.jstage.jst.go.jp/article/jsp/24/1/24_11/_article/-char/ja/
https://ieeexplore.ieee.org/document/8999311
https://www.springerprofessional.de/en/momentum-acceleration-of-quasi-Newton-training-for-neural-networ/17095012

APPENDIX B. LIST OF PUBLICATIONS

D. Presentation in academic conferences

1. S. Indrapriyadarsini, H. Ninomiya, M. Nishimura, "Stochastic Accelerated Quasi-Newton for
Training Neural Networks," Eastern European Machine Learning Summer School, EEML Jul
2022 (Poster) [Link]

2. S. Indrapriyadarsini, H. Ninomiya, M. Nishimura, "Accelerated Stochastic Quasi-Newton Meth-
ods for Training Neural Networks," 8th International Symposium towards Future Advanced
Research (ISFAR), Shizuoka University, Mar 2022 (Best Presentation Award)

3. S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, T. Kamio, H. Asai, "Accelerating Symmetric
Rank 1 Quasi-Newton Method with Nesterov’s Gradient", Affinity Workshop WiML NeurIPS,
Dec 2021 (Poster) [Link]

4. S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, T. Kamio, H. Asai, "A modified limited mem-
ory Nesterov’s accelerated quasi-Newton", WiML Workshop, ICML Jul 2021(Poster) [Link]

5. S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, T. Kamio, H. Asai, "VLSI Physical Design
Automation using Deep Reinforcement Learning", WiML Workshop @ NeurIPS, Dec 2020.
(Poster) [Link]

6. S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, T. Kamio, H. Asai, "Applications of Deep
Learning in Electronic Design Automation", Eastern European Machine Learning Summer
School, EEML Jul 2020. (Video) [Link]

7. S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, H. Asai, "A Modified Nesterov’s Accelerated
quasi-Newton Method on Tensorflow," 5th International Symposium towards Future Advanced
Research (ISFAR), Shizuoka University, Mar 2019 (Poster)

102

https://virtual.eeml.eu/poster_80.html
https://neurips.cc/media/PosterPDFs/NeurIPS 2021/e00da03b685a0dd18fb6a08af0923de0_QxxwcQC.png
https://icml.cc/media/PosterPDFs/ICML 2021/2021--1793c732e7e1-12552.png
https://drive.google.com/file/d/1vCaf5PCfr50DYrZD2SrSkpG9T8DILhU7/view?usp=sharing
https://youtu.be/ka7myLeeQ_U

Bibliography

[1] J. Nocedal and S. J. Wright, Numerical Optimization. Springer Series in Operations Research.
Springer, second edition, 2006.

[2] C. C. Aggarwal, Aggarwal, and Lagerstrom-Fife, Linear algebra and optimization for machine
learning. Springer, 2020.

[3] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein, “On the expressive power
of deep neural networks,” in international conference on machine learning, pp. 2847–2854,
PMLR, 2017.

[4] S. Arora, N. Cohen, and E. Hazan, “On the optimization of deep networks: Implicit acceleration
by overparameterization,” in International Conference on Machine Learning, pp. 244–253,
PMLR, 2018.

[5] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predictive variance
reduction,” in Advances in neural information processing systems, pp. 315–323, 2013.

[6] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola, “Stochastic variance reduction for
nonconvex optimization,” in International conference on machine learning, pp. 314–323, PMLR,
2016.

[7] A. Lucchi, B. McWilliams, and T. Hofmann, “A variance reduced stochastic newton method,”
arXiv preprint arXiv:1503.08316, 2015.

[8] H. Jia, X. Zhang, J. Xu, W. Zeng, H. Jiang, X. Yan, and J.-R. Wen, “Variance reduction for deep
q-learning using stochastic recursive gradient,” arXiv preprint arXiv:2007.12817, 2020.

[9] H. Robbins and S. Monro, “A stochastic approximation method,” The annals of mathematical
statistics, pp. 400–407, 1951.

[10] L. Bottou and Y. L. Cun, “Large scale online learning,” in Advances in neural information
processing systems, pp. 217–224, 2004.

[11] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Proceedings of
COMPSTAT’2010, pp. 177–186, Springer, 2010.

103

BIBLIOGRAPHY

[12] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and
stochastic optimization,” Journal of Machine Learning Research, vol. 12, no. Jul, pp. 2121–
2159, 2011.

[13] J. Konečnỳ and P. Richtárik, “Semi-stochastic gradient descent methods,” Frontiers in Applied
Mathematics and Statistics, vol. 3, p. 9, 2017.

[14] A. Defazio, F. Bach, and S. Lacoste-Julien, “Saga: A fast incremental gradient method with sup-
port for non-strongly convex composite objectives,” Advances in neural information processing
systems, vol. 27, 2014.

[15] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč, “Sarah: A novel method for machine
learning problems using stochastic recursive gradient,” in International Conference on Machine
Learning, pp. 2613–2621, PMLR, 2017.

[16] M. Schmidt, N. Le Roux, and F. Bach, “Minimizing finite sums with the stochastic average
gradient,” Mathematical Programming, vol. 162, no. 1, pp. 83–112, 2017.

[17] R. Bollapragada, R. Byrd, and J. Nocedal, “Adaptive sampling strategies for stochastic optimiza-
tion,” SIAM Journal on Optimization, vol. 28, no. 4, pp. 3312–3343, 2018.

[18] B. T. Polyak, “Some methods of speeding up the convergence of iteration methods,” Ussr
computational mathematics and mathematical physics, vol. 4, no. 5, pp. 1–17, 1964.

[19] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, “On the importance of initialization and
momentum in deep learning.,” ICML (3), vol. 28, no. 1139-1147, p. 5, 2013.

[20] Y. E. Nesterov, “A method for solving the convex programming problem with convergence rate
o(1/kˆ2),” in Dokl. akad. nauk Sssr, vol. 269, pp. 543–547, 1983.

[21] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop, coursera: Neural networks for machine
learning,” University of Toronto, Technical Report, 2012.

[22] D. P. Kingma and J. Ba, “Adam : A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[23] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and beyond,” arXiv preprint
arXiv:1904.09237, 2019.

[24] T. Dozat, “Incorporating nesterov momentum into adam,” Workshop track-ICLR, 2016.
[25] C. Gulcehre, M. Moczulski, and Y. Bengio, “Adasecant: robust adaptive secant method for

stochastic gradient,” arXiv preprint arXiv:1412.7419, 2014.
[26] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The marginal value of adaptive

gradient methods in machine learning,” Advances in neural information processing systems,
vol. 30, 2017.

104

BIBLIOGRAPHY

[27] S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, and H. Asai, “Implementation of a modified
nesterov’s accelerated quasi-newton method on tensorflow,” in 2018 17th IEEE International
Conference on Machine Learning and Applications (ICMLA), pp. 1147–1154, IEEE, 2018.

[28] S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, T. Kamio, and H. Asai, “A modified limited
memory nesterov’s accelerated quasi-newton,” arXiv preprint arXiv:2112.01327, 2021.

[29] S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, T. Kamio, and H. Asai, “A neural network ap-
proach to analog circuit design optimization using nesterov’s accelerated quasi-newton method,”
in 2020 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–1, IEEE, 2020.

[30] Y. Nesterov et al., Lectures on convex optimization, vol. 137. Springer, 2018.
[31] H. Ninomiya, “A novel quasi-newton-based optimization for neural network training incorpo-

rating nesterov’s accelerated gradient,” Nonlinear Theory and Its Applications, IEICE, vol. 8,
no. 4, pp. 289–301, 2017.

[32] S. Mahboubi and H. Ninomiya, “A novel training algorithm based on limited-memory quasi-
newton method with nesterov’s accelerated gradient in neural networks and its application to
highly-nonlinear modeling of microwave circuit,” IARIA International Journal on Advances in
Software, vol. 11, no. 3-4, pp. 323–334, 2018.

[33] S. Mahboubi, S. Indrapriyadarsini, H. Ninomiya, and H. Asai, “Momentum acceleration of
quasi-newton training for neural networks,” in Pacific Rim International Conference on Artificial
Intelligence, pp. 268–281, Springer, 2019.

[34] S. Full-wave, “3d planar electromagnetic field solver software for high frequency em simulation,
sonnet software.”

[35] A. S. Sedra, K. C. Smith, T. C. Carusone, and V. Gaudet,Microelectronic circuits, vol. 4. Oxford
university press New York, 2004.

[36] Z. Wang, X. Luo, and Z. Gong, “Application of deep learning in analog circuit sizing,” in
Proceedings of the 2018 2nd International Conference on Computer Science and Artificial
Intelligence, pp. 571–575, 2018.

[37] S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, and H. Asai, “A stochastic quasi-newton
method with nesterov’s accelerated gradient,” in ECML-PKDD, Springer, 2019.

[38] S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, T. Kamio, and H. Asai, “A stochastic momen-
tum accelerated quasi-newton method for neural networks (student abstract),” in Proceedings of
the 36th AAAI Conference on Artificial Intelligence, 2022.

[39] X. Peng, L. Li, and F.-Y. Wang, “Accelerating minibatch stochastic gradient descent using
typicality sampling,” arXiv preprint arXiv:1903.04192, 2019.

[40] J. Martens, “Deep learning via hessian-free optimization.,” in ICML, vol. 27, pp. 735–742, 2010.
[41] F. Roosta-Khorasani and M. W. Mahoney, “Sub-sampled newton methods i: globally convergent

algorithms,” arXiv preprint arXiv:1601.04737, 2016.

105

BIBLIOGRAPHY

[42] J. E. Dennis, Jr and J. J. Moré, “Quasi-newton methods, motivation and theory,” SIAM review,
vol. 19, no. 1, pp. 46–89, 1977.

[43] N. Agarwal, B. Bullins, and E. Hazan, “Second-order stochastic optimization in linear time,”
stat, vol. 1050, p. 15, 2016.

[44] N. N. Schraudolph, J. Yu, and S. Günter, “A stochastic quasi-newton method for online convex
optimization,” in Artificial Intelligence and Statistics, pp. 436–443, 2007.

[45] A. Mokhtari and A. Ribeiro, “Res: Regularized stochastic bfgs algorithm,” IEEE Transactions
on Signal Processing, vol. 62, no. 23, pp. 6089–6104, 2014.

[46] A. Mokhtari and A. Ribeiro, “Global convergence of online limited memory bfgs,” The Journal
of Machine Learning Research, vol. 16, no. 1, pp. 3151–3181, 2015.

[47] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer, “A stochastic quasi-newton method for
large-scale optimization,” SIAM Journal on Optimization, vol. 26, no. 2, pp. 1008–1031, 2016.

[48] X. Wang, S. Ma, D. Goldfarb, and W. Liu, “Stochastic quasi-newton methods for nonconvex
stochastic optimization,” SIAM Journal on Optimization, vol. 27, no. 2, pp. 927–956, 2017.

[49] Y. Li and H. Liu, “Implementation of stochastic quasi-newton’s method in pytorch,” arXiv
preprint arXiv:1805.02338, 2018.

[50] P. Moritz, R. Nishihara, and M. Jordan, “A linearly-convergent stochastic l-bfgs algorithm,” in
Artificial Intelligence and Statistics, pp. 249–258, 2016.

[51] R. Bollapragada, D. Mudigere, J. Nocedal, H.-J. M. Shi, and P. T. P. Tang, “A progressive
batching l-bfgs method for machine learning,” arXiv preprint arXiv:1802.05374, 2018.

[52] R. H. Byrd, G. M. Chin, W. Neveitt, and J. Nocedal, “On the use of stochastic hessian information
in optimization methods for machine learning,” SIAM Journal on Optimization, vol. 21, no. 3,
pp. 977–995, 2011.

[53] R. Gower, D. Goldfarb, and P. Richtárik, “Stochastic block bfgs: Squeezing more curvature out
of data,” in International Conference on Machine Learning, pp. 1869–1878, 2016.

[54] L. Zhang, “A globally convergent bfgsmethod for nonconvexminimizationwithout line searches,”
Optimization Methods and Software, vol. 20, no. 6, pp. 737–747, 2005.

[55] Y.-H. Dai, “Convergence properties of the bfgs algoritm,” SIAM Journal on Optimization,
vol. 13, no. 3, pp. 693–701, 2002.

[56] M. Zinkevich, “Online convex programming and generalized infinitesimal gradient ascent,” in
Proceedings of the 20th International Conference onMachine Learning (ICML-03), pp. 928–936,
2003.

[57] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,” AT&T Labs [Online]
Available: http://yann.lecun.com/exdb/mnist, 2010.

106

BIBLIOGRAPHY

[58] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, “Modeling wine preferences by data
mining from physicochemical properties,” Decision Support Systems, vol. 47, no. 4, pp. 547–553,
2009.

[59] E. Alpaydin and C. Kaynak, “Optical recognition of handwritten digits data set,” UCI Machine
Learning Repository, 1998.

[60] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[61] M. J. Powell, “Some global convergence properties of a variable metric algorithm for minimiza-
tion without exact line searches,” in Nonlinear programming, SIAM-AMS proceedings, vol. 9,
1976.

[62] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural networks,”
in ICML, pp. 1310–1318, 2013.

[63] S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, and H. Asai, “An adaptive stochastic nes-
terov’s accelerated quasi-newton method for training rnns,” in International Symposium on
Nonlinear Theory and Its Applications, NOLTA’19, The Institute of Electronics, Information
and Communication Engineers, IEICE, 2019.

[64] S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, and H. Asai, “asnaq: An adaptive stochas-
tic nesterov’s accelerated quasi-newton method for training rnns,” Nonlinear Theory and Its
Applications, IEICE, vol. 11, no. 4, pp. 409–421, 2020.

[65] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.
[66] I. Sutskever, Training recurrent neural networks. University of Toronto, Ontario, Canada, 2013.
[67] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8,

pp. 1735–1780, 1997.
[68] J. Martens and I. Sutskever, “Learning recurrent neural networks with hessian-free optimization,”

in Proceedings of the 28th ICML, pp. 1033–1040, 2011.
[69] C.-C. Peng andG. D.Magoulas, “Nonmonotone bfgs-trained recurrent neural networks for tempo-

ral sequence processing,” Applied mathematics and computation, vol. 217, no. 12, pp. 5421–5441,
2011.

[70] Q. V. Le, N. Jaitly, and G. E. Hinton, “A simple way to initialize recurrent networks of rectified
linear units,” arXiv preprint arXiv:1504.00941, 2015.

[71] N. S. Keskar and A. S. Berahas, “adaqn: An adaptive quasi-newton algorithm for training rnns,”
in Joint ECML-KDD, pp. 1–16, Springer, 2016.

[72] D. E. Rumelhart, G. E. Hinton, and R. J.Williams, “Learning representations by back-propagating
errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

107

BIBLIOGRAPHY

[73] P. J. Werbos, “Backpropagation through time: what it does and how to do it,” Proceedings of
the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[74] S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, T. Kamio, and H. Asai, “A nesterov’s acceler-
ated quasi-newton method for global routing using deep reinforcement learning,” in International
Symposium on Nonlinear Theory and Its Applications, NOLTA’20, pp. 251–254, November
2020.

[75] S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, K. Takeshi, and H. Asai, “A nesterov’s accel-
erated quasi-newton method for global routing using deep reinforcement learning,” Nonlinear
Theory and Its Applications, IEICE, vol. 12, no. 3, pp. 323–335, 2021.

[76] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge, MA: MIT
Press, 1st ed., 1998.

[77] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, pp. 279–292, May 1992.
[78] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, pp. 529–533, February 2015.

[79] H. V. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning,” in
30tℎ AAAI Conf. on Artificial Intelligence, March 2016.

[80] S. Ghiassian, B. Rafiee, Y. L. Lo, and A. White, “Improving performance in reinforcement learn-
ing by breaking generalization in neural networks,” in International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS)., May 2020.

[81] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep reinforcement
learning that matters,” in Proc. Thirty-Second AAAI Conference on Artificial Intelligence, April
2018.

[82] A. Jacobsen, M. Schlegel, C. Linke, T. Degris, A. White, and M. White, “Meta-descent for
online, continual prediction,” in Proc. AAAI Conference on Artificial Intelligence, 2019.

[83] W.-Y. Zhao, X.-Y. Guan, Y. Liu, X. Zhao, and J. Peng, “Stochastic variance reduction for deep
q-learning,” arXiv preprint arXiv:1905.08152, 2019.

[84] G.W. Clow, “A global routing algorithm for general cells,” in 21st Design Automation Conference
Proceedings, pp. 45–51, IEEE, June 1984.

[85] W. T. J. Chan, P. H. Ho, A. B. Kahng, and P. Saxena, “Routability optimization for industrial
designs at sub-14nm process nodes using machine learning,” in Proc. of the 2017 ACM on
International Symposium on Physical Design, pp. 15–21, March 2017.

[86] B. Li and P. D. Franzon., “Machine learning in physical design,” in Proc. IEEE 25th Conference
on Electrical Performance Of Electronic Packaging And Systems, pp. 147–150, IEEE, October
2016.

108

BIBLIOGRAPHY

[87] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller,
“Playing atari with deep reinforcement learning,” arXiv preprint, December 2013.

[88] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
“Continuous control with deep reinforcement learning,” arXiv preprint, September 2015.

[89] H. Liao, W. Zhang, X. Dong, B. Poczos, K. Shimada, and L. Burak Kara, “A deep reinforcement
learning approach for global routing,” Journal of Mechanical Design, vol. 142, no. 6, 2020.

[90] H.-Y. Chen and Y.-W. Chang, “Global and detailed routing,” in Electronic Design Automation,
pp. 687–749, Elsevier, 2009.

[91] P. G. Mehta and S. P. Meyn, “Convex q-learning, part 1: Deterministic optimal control,” arXiv
preprint arXiv:2008.03559, 2020.

[92] S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, T. Kamio, and H. Asai, “Accelerating sym-
metric rank-1 quasi-newton method with nesterov’s gradient for training neural networks,”
Algorithms, vol. 15, no. 1, p. 6, 2021.

[93] R. H. Byrd, H. F. Khalfan, and R. B. Schnabel, “Analysis of a symmetric rank-one trust region
method,” SIAM Journal on Optimization, vol. 6, no. 4, pp. 1025–1039, 1996.

[94] J. Brust, J. B. Erway, and R. F. Marcia, “On solving l-sr1 trust-region subproblems,” Computa-
tional Optimization and Applications, vol. 66, no. 2, pp. 245–266, 2017.

[95] P. Spellucci, “A modified rank one update which converges q-superlinearly,” Computational
Optimization and Applications, vol. 19, no. 3, pp. 273–296, 2001.

[96] F. Modarres, M. A. Hassan, and W. J. Leong, “A symmetric rank-one method based on extra up-
dating techniques for unconstrained optimization,” Computers & Mathematics with Applications,
vol. 62, no. 1, pp. 392–400, 2011.

[97] H. F. Khalfan, R. H. Byrd, and R. B. Schnabel, “A theoretical and experimental study of the
symmetric rank-one update,” SIAM Journal on Optimization, vol. 3, no. 1, pp. 1–24, 1993.

[98] M. Jahani, M. Nazari, S. Rusakov, A. S. Berahas, and M. Takáč, “Scaling up quasi-newton
algorithms: Communication efficient distributed sr1,” in International Conference on Machine
Learning, Optimization, and Data Science, pp. 41–54, Springer, 2020.

[99] A. Berahas, M. Jahani, P. Richtarik, and M. Takáč, “Quasi-newton methods for machine learning:
forget the past, just sample,” Optimization Methods and Software, pp. 1–37, 2021.

[100] B. O’donoghue and E. Candes, “Adaptive restart for accelerated gradient schemes,” Foundations
of computational mathematics, vol. 15, no. 3, pp. 715–732, 2015.

[101] S. Mahboubi, S. Indrapriyadarsini, H. Ninomiya, H. Asai, et al., “Momentum acceleration of
quasi-newton based optimization technique for neural network training,” Nonlinear Theory and
Its Applications, IEICE, vol. 12, no. 3, pp. 554–574, 2021.

109

BIBLIOGRAPHY

[102] R. H. Byrd, J. Nocedal, and R. B. Schnabel, “Representations of quasi-newton matrices and
their use in limited memory methods,” Mathematical Programming, vol. 63, no. 1, pp. 129–156,
1994.

[103] X. Lu and R. H. Byrd, A Study of the Limited Memory Sr1 Method in Practice. PhD thesis,
University of Colorado at Boulder, USA, 1996.

[104] G. A. Shultz, R. B. Schnabel, and R. H. Byrd, “A family of trust-region-based algorithms
for unconstrained minimization with strong global convergence properties,” SIAM Journal on
Numerical analysis, vol. 22, no. 1, pp. 47–67, 1985.

[105] K. Crammer, A. Kulesza, and M. Dredze, “Adaptive regularization of weight vectors,” Advances
in neural information processing systems, vol. 22, 2009.

[106] J. Ba, R. Grosse, and J. Martens, “Distributed second-order optimization using kronecker-
factored approximations,” 2016.

[107] R. Anil, V. Gupta, T. Koren, K. Regan, and Y. Singer, “Scalable second order optimization for
deep learning,” arXiv preprint arXiv:2002.09018, 2020.

[108] W. Chen, Z. Wang, and J. Zhou, “Large-scale l-bfgs using mapreduce,” Advances in neural
information processing systems, vol. 27, 2014.

[109] Y. Fei, G. Rong, B. Wang, and W. Wang, “Parallel l-bfgs-b algorithm on gpu,” Computers &
graphics, vol. 40, pp. 1–9, 2014.

[110] J. Sherman and W. J. Morrison, “Adjustment of an inverse matrix corresponding to a change in
one element of a givenmatrix,” The Annals of Mathematical Statistics, vol. 21, no. 1, pp. 124–127,
1950.

[111] M. A. Woodbury, Inverting modified matrices. Statistical Research Group, 1950.

110

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation and Objective
	Thesis Outline
	Notation

	Optimization for Training Neural Networks
	Introduction
	Gradient Based Optimization
	First Order Gradient Based Optimization
	Steepest Gradient Descent
	Momentum Acceleration
	Other Update Strategies

	Second Order Gradient Based Optimization
	Newton Methods
	Quasi-Newton Methods

	Quasi-Newton Methods for Training Neural Networks
	Quasi-Newton Methods
	The SR1 Method
	The BFGS quasi-Newton Method
	Limited Memory BFGS Method

	Nesterov's Acceleration
	Accelerated Quasi-Newton Methods
	The NAQ Method
	Limited Memory NAQ
	The MoQ Method
	Limited Memory MoQ

	Simulation Examples
	Sinusoidal function approximation problem
	Levy function approximation problem
	Microstrip low pass filter modeling problem
	Op-Amp circuit design optimization problem

	Accelerated Stochastic Quasi-Newton Methods
	Introduction
	Background
	Stochastic BFGS with Nesterov's Acceleration
	Stochastic NAQ Method
	Stochastic Limited-Memory NAQ (oLNAQ)
	Simulation Results

	Stochastic BFGS with Momentum Acceleration
	Stochastic MoQ Method
	MoQ Simulation Results

	Convergence Analysis
	Discussions
	Choice of step size
	Choice of parameters
	Computation and Storage Cost

	Summary

	Adaptive Stochastic Nesterov's Accelerated quasi-Newton
	Introduction
	Background
	adaQN

	Proposed aSNAQ Method
	Convergence Analysis
	Computational Cost
	Simulation Results
	Sequence Counting Problem
	Image Classification
	Character Level Language modeling
	Performance on LSTM

	Discussion
	Summary

	Quasi-Newton Methods for Deep Reinforcement Learning
	Introduction
	Background
	Nesterov's Accelerated Quasi-Newton Method for Q-learning
	VLSI Global Routing
	Global Routing Modelling
	Deep Reinforcement Learning Framework for Global Routing

	Simulation Results
	Discussion on the choice of mL and mF
	Performance comparison of aSNAQ in routing 50 nets
	Discussions on the performance

	Summary

	Accelerating Symmetric Rank-1 Quasi-Newton Method
	Introduction
	Background
	Second-Order Quasi-Newton Methods
	Trust region approach

	Proposed L-SR1-N Method
	Convergence Analysis
	Simulation Results
	Results of the Levy Function Approximation Problem
	Results of MNIST Image Classification Problem

	Summary

	Conclusion
	Summary
	Limitations and Future Work

	Appendix
	Two-loop recursion
	Sherman Morrison Woodbury Formula

	List of Publications
	Bibliography

