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INTRODUCTION

➢ What is optimization?

Given 𝑓 𝒙 , find 𝒙 that minimizes 𝑓 𝒙 . 

This is a key fundamental problem with broad applications across different areas

➢ A function being optimized can be either convex or non-convex

Chapter 1 : Introduction
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INTRODUCTION

▪ Many Machine Learning problems require to optimize a function 𝑓 of some variable(s) 𝑥

▪ For simplicity, assume 𝑓 is a scalar-valued function of a scalar 𝑥 (𝑓: ℝ → ℝ)

▪ Functions can have one or more optima (maxima, minima), and maybe saddle points

▪ Finding the optima or saddles requires derivatives/gradients of the function

𝑓(𝑥) Global maximaA local maxima A local maxima

A local minima

A local minima

A local minima

Global minima

Usually interested in global 

optima but often want to find 

local optima, too

𝑥 For deep learning models, often the 

local optima are what we can find (and 

they usually suffice)
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min
𝒘ϵℝ𝑑

𝐸 𝒘 =
1

𝑇𝑟


𝑝∈𝑇𝑟

𝐸𝑝 𝒘

𝐸𝑝 𝒘 =
1

2
𝑑𝑝 − 𝑜𝑝

2
Mean Squared Error
(regression problems)

➢ Given a dataset 𝑖𝑝, 𝑑𝑝 𝑝∈𝑇𝑟

➢ Objective function

➢ Neural network : Parameterized model to map function 𝐸𝑝 𝒘; 𝑖𝑝, 𝑑𝑝 𝒘 ∈ ℝ𝑑

OPTIMIZATION IN SUPERVISED LEARNING

Loss function
Cross Entropy Error
(classification problems)

𝐸𝑝 𝒘 = −

𝑐=1

𝑀

𝑑𝑝 log 𝑜𝑝
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➢ Classical machine learning models are either convex or can be reduced to a convex  

optimization problems solved with conventional mathematical optimization methods.

➢ Optimization in machine learning is presently dominated by first-order methods.

➢ First order methods exhibit

• slow convergence

• high sensitivity to hyperparameter settings 

• stagnation at high training errors, and 

• difficulty escaping flat regions and saddle points.

MOTIVATION

➢ Quasi-Newton methods

• Faster convergence

• Moderate computational cost

• Better scalability
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➢ Study the behavior of first and second order methods in training neural networks

➢ Investigate the feasibility of Nesterov’s acceleration on algorithms in the quasi-Newton family.

➢ Devise robust and efficient accelerated second-order optimizers suitable for stochastic training.

➢ Analyze computational cost and convergence guarantees.

OBJECTIVE AND SCOPE
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GRADIENT BASED 
ALGORITHMS

FIRST ORDER METHODS 
SECOND/APPROXIMATED 

SECOND ORDER METHODS 

➢ Faster convergence
➢ Suitable for highly non-

linear problems
➢ High computational cost

➢ Slow convergence in highly 
non-linear problems

➢ Simple and low complexity

Classical Momentum
Nesterov’s Accelerated Gradient (NAG)

AdaGrad, RMSProp, Adam

Newton Method
Quasi-Newton Method (QN)

Nesterov's Accelerated quasi-Newton (NAQ)

𝒘 ≔ 𝒘 − 𝛼
𝜕𝐸

𝜕𝒘 Gradient
∇𝐸(𝒘)

𝒘 ≔ 𝒘 − 𝛼 𝑯 ∇𝐸(𝒘)

Hessian

weight

lo
ss
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The weight vector is updated by the update vector 𝒗𝒌+𝟏 as

𝒘𝒌+𝟏 = 𝒘𝒌 + 𝒗𝒌+𝟏

Steepest gradient descent(SGD) with a step size  𝛼𝑘

𝒗𝒌+𝟏 = −𝛼𝑘𝛻𝐸(𝒘𝒌)

Classical momentum (CM) method

𝒗𝒌+𝟏 = 𝜇𝒗𝒌 − 𝛼𝑘𝛻𝐸(𝒘𝒌)

Nesterov’s Accelerated Gradient (NAG) method

𝒗𝒌+𝟏 = 𝜇𝒗𝒌 − 𝛼𝑘𝛻𝐸(𝒘𝒌+𝜇𝒗𝒌)

Normal Gradient

Momentum term

Nesterov’s Accelerated 
Gradient (NAG)Momentum term +

…(𝐸𝑞. 𝟏)

… (𝐸𝑞. 𝟐)

… (𝐸𝑞. 𝟑)

… (𝐸𝑞. 𝟒)

FIRST ORDER ALGORITHMS
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The weight is updated with update vector 𝒗𝒌+𝟏 as:

𝒘𝒌+𝟏 = 𝒘𝒌 + 𝒗𝒌+𝟏

The weight update of quasi-Newton (QN) method is given as

𝒗𝒌+𝟏 = −𝛼𝑘𝑯𝒌𝛻𝐸(𝒘𝒌)

The matrix 𝐇𝑘 is iteratively approximated by BFGS formula 

𝑯𝒌+𝟏 = 𝑰 − 𝜌𝑘𝒔𝒌𝒚𝒌
𝑻 𝑯𝒌 𝑰 − 𝜌𝑘𝒚𝒌𝒔𝒌

𝑻 + 𝜌𝑘𝒔𝒌𝒔𝒌
𝑻

𝜌𝑘 =
𝟏

𝒚𝒌
𝑻𝒔𝒌

,  𝒔𝒌 = 𝒘𝒌+𝟏 −𝒘𝒌 and 𝒚𝒌＝𝛻𝐸(𝒘𝒌+𝟏) − 𝛻𝐸(𝒘𝒌)

Normal Gradient

Normal GradientsNormal Gradients

…(𝐸𝑞. 𝟔)

… (𝐸𝑞. 𝟕)

QUASI-NEWTON METHOD

…(𝐸𝑞. 𝟓)

… (𝐸𝑞. 𝟖)
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Source: H. Ninomiya, “A novel quasi-Newton-Optimization for neural network training incorporating Nesterov’s accelerated 
gradient”, IEICE NOLTA Journal, Oct. 2017.

GEOMETRIC VIEWS
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The update vector of NAQ

𝒘𝒌+𝟏 = 𝒘𝒌 + 𝜇𝐯𝑘 − 𝛼𝑘𝑯𝒌𝛻𝐸(𝒘𝒌+𝜇𝒗𝒌)

The matrix 𝑯𝒌 is iteratively approximated by

𝑯𝒌+𝟏 = 𝑰 − ρ𝒌𝒑𝒌𝒒𝒌
𝑻 𝑯𝒌 𝑰 − ρ𝒌𝒒𝒌𝒑𝒌

𝑻 + ρ𝒌𝒑𝒌𝒑𝒌
𝑻

NESTEROV’S ACCELERATED QUASI-NEWTON METHOD (NAQ)

𝜌𝑘 =
𝟏

𝒒𝒌
𝑻𝒑𝒌

,  𝒑𝒌 = 𝒘𝒌+𝟏 − (𝒘𝒌+𝜇𝒗𝒌) and 𝒒𝒌＝𝛻𝐸(𝒘𝒌+𝟏) − 𝛻𝐸(𝒘𝒌+𝜇𝒗𝒌)

Normal Gradient Nesterov’s Accelerated 
Gradient(NAG)

Nesterov’s Accelerated 
Gradient(NAG)

Momentum term

…(𝐸𝑞. 𝟗)

… (𝐸𝑞. 𝟏𝟎)

H. Ninomiya, “A novel quasi-Newton-Optimization for neural network training incorporating Nesterov’s accelerated gradient”, IEICE NOLTA Journal, Oct. 2017.

Two gradient computations 
per iteration

2022-08-04 OPTIMIZATION FOR TRAINING NEURAL NETWORKS 13



COMPARISON OF BFGS AND NAQ ALGORITHM

NAQ ALGORITHM

𝐑𝐞𝐪𝐮𝐢𝐫𝐞 0 < 𝜇 < 1, 𝑘𝑚𝑎𝑥

𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 𝒘𝑘 ∈ ℝ𝑑 , 𝑯𝑘= ϵ𝑰, 𝒗𝑘= 0 and 𝑘 ← 1
𝐰𝐡𝐢𝐥𝐞 ( 𝐸(𝒘𝒌) > 𝜀 𝐚𝐧𝐝 𝑘 < 𝑘𝑚𝑎𝑥) 𝐝𝐨

1.   Calculate ∇𝐸 𝒘𝑘 + 𝜇𝒗𝑘
2.   𝒈𝑘 ← −𝑯𝑘∇𝐸 𝒘𝑘 + 𝜇𝒗𝑘
3.   Determine α𝑘 using Armijo linesearch

4.   𝒗𝑘+1 = 𝜇𝒗𝑘 + α𝑘𝒈𝑘

5.   𝒘𝑘+1 = 𝒘𝑘 + 𝒗𝑘+1
6. Calculate ∇𝐸2 ← ∇𝐸 𝒘𝑘+1

7.   𝒑𝑘 ← 𝒘𝑘+1 − (𝒘𝑘 + 𝜇𝒗𝑘)
8.   𝒒𝑘 ← ∇𝐸 𝒘𝑘+1 − ∇𝐸 𝒘𝑘 + 𝜇𝒗𝑘
9. Update 𝑯𝑘+1

10. 𝑘 ← 𝑘 + 1
𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞

BFGS ALGORITHM

𝐑𝐞𝐪𝐮𝐢𝐫𝐞 𝑘𝑚𝑎𝑥

𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 𝒘𝑘 ∈ ℝ𝑑 , 𝑯𝑘= ϵ𝑰, 𝒗𝑘= 0 and 𝑘 ← 1
Calculate ∇𝑬 𝒘𝑘

𝐰𝐡𝐢𝐥𝐞 ( 𝑬(𝒘𝒌) > 𝜀 𝐚𝐧𝐝 𝑘 < 𝑘𝑚𝑎𝑥) 𝐝𝐨
1.   𝒈𝑘 ← −𝑯𝑘∇𝐸 𝒘𝑘

2.   Determine α𝑘 using Armijo linesearch

3.   𝒗𝑘+1 = α𝑘𝒈𝑘

4.   𝒘𝑘+1 = 𝒘𝑘 + 𝒗𝑘+1
5. Calculate ∇𝐸 𝒘𝑘+1

6.   𝒑𝑘 ← 𝒘𝑘+1 −𝒘𝑘

7.   𝒒𝑘 ← ∇𝐸 𝒘𝑘+1 − ∇𝐸 𝒘𝑘

8. Update 𝑯𝑘+1

9. 𝑘 ← 𝑘 + 1
𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞
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MOMENTUM QUASI-NEWTON METHOD (MoQ)

The update vector of NAQ

𝒘𝒌+𝟏 = 𝒘𝒌 + 𝜇𝐯𝑘 − 𝛼𝑘𝑯𝒌𝛻𝐸(𝒘𝒌+𝜇𝒗𝒌)

Nesterov’s Accelerated 
Gradient(NAG)

Momentum term

Nesterov’s accelerated gradient approximation

𝛻𝐸(𝒘𝒌+𝜇𝒗𝒌) ≈ (1 + 𝜇𝑘)𝛻𝐸(𝒘𝒌) − 𝜇𝑘𝛻𝐸(𝐰𝐤−𝟏)

𝜌𝑘 =
𝟏

𝒒𝒌𝑻𝒑𝒌
,  𝒑𝒌 = 𝒘𝒌+𝟏 − (𝒘𝒌+𝜇𝒗𝒌) and 𝒒𝒌＝𝛻𝐸(𝒘𝒌+𝟏) − {(1 + 𝜇𝑘)𝛻𝐸(𝒘𝒌) − 𝜇𝑘𝛻𝐸(𝐰𝐤−𝟏)}

and the Hessian matrix 𝑯𝒌 is updated as

𝑯𝒌+𝟏 = 𝑰 − ρ𝒌𝒑𝒌𝒒𝒌
𝑻 𝑯𝒌 𝑰 − ρ𝒌𝒒𝒌𝒑𝒌

𝑻 + ρ𝒌𝒑𝒌𝒑𝒌
𝑻

Shahrzad Mahboubi, S. Indrapriyadarsini, Hiroshi Ninomiya, Hideki Asai, “Momentum acceleration of quasi-Newton Training for Neural Networks”, 16th 
Pacific Rim International Conference on Artificial Intelligence, PRICAI 2019, (pp. 268-281). Springer, Cham.

…(𝐸𝑞. 𝟏𝟏)

… (𝐸𝑞. 𝟏𝟐)

… (𝐸𝑞. 𝟏𝟑)

2022-08-04 OPTIMIZATION FOR TRAINING NEURAL NETWORKS 15



BEALE FUNCTION

The Beale function is multimodal, 

with sharp peaks at the corners of 

the input domain

Unconstrained test function

Global minimum 

𝑓 𝑥∗ = 0 at 𝑥∗ = (3,0.5)

𝒇 𝒙 = (𝟏. 𝟓 − 𝒙𝟏 + 𝒙𝟏 𝒙𝟐 )
𝟐

+ (𝟐. 𝟐𝟓 − 𝒙𝟏 + 𝒙𝟏 𝒙𝟐
𝟐 )𝟐

+ (𝟐. 𝟔𝟐𝟓 − 𝒙𝟏 + 𝒙𝟏 𝒙𝟐
𝟑 )𝟐

Global Optimization Test Problems. Retrieved June 2013, from http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm.
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QUASI-NEWTON METHOD : SECANT CONDITION









QUASI-NEWTON METHOD 

…(𝐸𝑞. 𝟏𝟒)

…(𝐸𝑞. 𝟏𝟓)

…(𝐸𝑞. 𝟏𝟔)

…(𝐸𝑞. 𝟏𝟕)
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 The Nesterov’s acceleration approximates the quadratic model at 𝐰𝐤 + μ𝐯𝐤 instead of the 

iterate at 𝐰𝐤

QUASI-NEWTON METHOD + NESTEROV’S ACCELERATION 
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We have

𝐸 𝒘𝑘 + 𝑑 ≈ 𝑚𝑘 𝒅

𝐸 𝒘𝑘+1 + 𝑑 ≈ 𝑚𝑘+1 𝒅

Require: 

𝑚𝑘+1 matches the gradient at the previous two iterations, i.e.,

1.

2.

QUASI-NEWTON METHOD + NESTEROV’S ACCELERATION 
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QUASI-NEWTON METHOD + NESTEROV’S ACCELERATION 

𝐸 𝒘𝑘+1 + 𝑑 ≈ 𝑚𝑘+1 𝒅 = 𝐸 𝒘𝑘+1 + 𝛻𝐸 𝒘𝑘+1
𝑇𝒅 +

1

2
𝒅𝑇𝛻2𝐸 𝒘𝑘+1 𝒅

Condition 1:

𝛻𝑚𝑘+1 𝒅 = 𝛻𝐸 𝒘𝑘+1 + 𝛻2𝐸 𝒘𝑘+1 𝒅

𝛻𝑚𝑘+1 0 = 𝛻𝐸 𝒘𝑘+1 + 𝛻2𝐸 𝒘𝑘+1 𝒅 |𝒅=0 ⇒ 𝒔𝒂𝒕𝒊𝒔𝒇𝒊𝒆𝒅

Condition 2:

𝛻𝑚𝑘+1 −𝛼𝒅𝑘 = 𝛻𝐸 𝒘𝑘+1 − 𝛼𝛻2𝐸 𝒘𝑘+1 𝒅𝑘

𝛻𝑚𝑘+1 −𝛼𝒅𝑘 = 𝛻𝐸 𝒘𝑘+1 − 𝛼𝛻2𝐸 𝒘𝑘+1 𝒅𝑘 = 𝛻𝐸 𝒘𝑘+1 − 𝛼𝒅𝑘 = 𝛻𝐸 𝒘𝑘 + 𝜇𝒗𝑘

𝛻𝐸 𝒘𝑘+1 − 𝛼𝛻2𝐸 𝒘𝑘+1 𝒅𝑘 = 𝛻𝐸 𝒘𝑘 + 𝜇𝒗𝑘

𝛻𝐸 𝒘𝑘+1 − 𝛻𝐸 𝒘𝑘 + 𝜇𝒗𝑘 = 𝑩𝑘+1 𝒘𝑘+1 − (𝒘𝑘 + 𝜇𝒗𝑘)

𝒒𝑘 = 𝑩𝑘+1𝒑𝑘 ⇒ 𝑺𝒆𝒄𝒂𝒏𝒕 𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏

𝒑𝒌, 𝒒𝒌 ⇒ 𝑪𝒖𝒓𝒗𝒂𝒕𝒖𝒓𝒆 𝑰𝒏𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 𝑷𝒂𝒊𝒓

Proof:

S. Indrapriyadarsini, Shahrzad Mahboubi, Hiroshi Ninomiya, Takeshi Kamio, Hideki Asai, “Accelerating Symmetric Rank 1 Quasi-Newton Method with Nesterov’s
Gradient”, Algorithms 2022, 15(1), 6;
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𝐜𝐨𝐧𝐯𝐞𝐫𝐠𝐞𝐧𝐜𝐞 term

MODIFIED NESTEROV’S ACCELERATED BFGS QUASI-NEWTON – mNAQ

𝑯𝒌+𝟏 = 𝑰 − ρ𝒌𝒑𝒌𝒒𝒌
𝑻 𝑯𝒌 𝑰 − ρ𝒌𝒒𝒌𝒑𝒌

𝑻 + ρ𝒌𝒑𝒌𝒑𝒌
𝑻

⇒ Modified Secant Condition

Indrapriyadarsini S., Shahrzad Mahboubi, Hiroshi Ninomiya, and Hideki Asai. “Implementation of a modified Nesterov’s Accelerated quasi-Newton method on 
Tensorflow” In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), IEEE (2018) 1147–1154

2)   Eliminating linesearch 

Determine step size 𝛼𝑘 using the explicit formula

𝜶𝒌 = −
𝜹𝛻𝐸(𝒘𝒌 + 𝝁𝒗𝒌)

𝑻ෝ𝒈𝒌

ෝ𝒈𝒌
𝟐
𝑸𝒌

…(𝐸𝑞. 𝟏𝟗)

Linesearch -> more number 
of function evaluations -> 

increased computation time

1)  Incorporating an additional 𝝃𝒌𝒑𝒌 term for better convergence

𝒑𝒌 = 𝒘𝒌+𝟏 − (𝒘𝒌+𝜇𝒗𝒌)

𝒒𝒌 = 𝛻𝐸 𝒘𝒌+𝟏 − 𝛻𝐸 𝒘𝒌 + 𝝁𝒗𝒌 + 𝝃𝒌𝒑𝒌 = 𝜺𝒌 + 𝝃𝒌𝒑𝒌 …(𝐸𝑞. 𝟏𝟖)
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MICROSTRIP LOW PASS FILTER MODELING PROBLEM

Indrapriyadarsini S., Shahrzad Mahboubi, Hiroshi Ninomiya, and Hideki Asai. “Implementation of a modified Nesterov’s Accelerated quasi-Newton method on Tensorflow” In: 2018 17th IEEE International 
Conference on Machine Learning and Applications (ICMLA), IEEE (2018) 1147–1154

Inputs : D=12,14,16,18,20mm
Input frequency f = 0.1 - 4.5GHz
Outputs: S parameters |𝑠11| and |𝑠21|

• Input nodes = 2
• Hidden neurons = 45
• Output nodes = 2
• Parameters = 227
• Training data : 1105 
• Test data: 884

Average training error vs epoch over 15 trials
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CIRCUIT DESIGN OPTIMIZATION

Indrapriyadarsini S., Shahrzad Mahboubi, Hiroshi Ninomiya, Takeshi Kamio and Hideki Asai. “A Neural Network Approach to Analog Circuit Design Optimization using Nesterov's Accelerated Quasi-Newton 
Method." 2020 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2020
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OPTIMIZATION IN LARGE SCALE PROBLEMS

Require

➢ Fast training
➢ Good accuracy
➢ Reduce computation cost
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FULL BATCH VS STOCHASTIC/MINI-BATCH 

Full Batch Stochastic Mini-batch

High stability but 
for large scale 

problems – high 
computation and 
time consuming

Noisy but fast 
and lesser 

computation cost –
suitable for large 

scale optimization

Combines the 
advantages of full 

batch and 
stochastic 
methods

One epoch is when the entire dataset is 
processed by the neural network.
In full batch, 1 iteration = 1 epoch
In mini-batch, if |Tr| = 100, b = 10 

10 iterations = 1 epoch
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Introduction

Background

• Proposed Methods, Results and Convergence Analysis

• Accelerated Stochastic Quasi-Newton [ oLNAQ / oLMoQ ]

• Adaptive Stochastic Quasi-Newton [ aSNAQ ]

• Accelerated Symmetric Rank-1 Quasi-Newton [ LSR1-N ]

Stochastic accelerated quasi-Newton Methods

OUTLINE



STOCHASTIC BFGS QUASI-NEWTON METHOD (OBFGS)

➢ The update vector of quasi-Newton (QN) method

𝒗𝒌+𝟏 = −𝜶𝒌𝑯𝒌𝛻𝐸(𝒘𝒌, 𝑿𝒌)

➢ The matrix 𝐇𝑘 is iteratively approximated by BFGS formula

𝑯𝒌+𝟏 = 𝑰 − 𝝆𝒌𝒔𝒌𝒚𝒌
𝑻 𝑯𝒌 𝑰 − 𝝆𝒌𝒚𝒌𝒔𝒌

𝑻 + 𝝆𝒌𝒔𝒌𝒔𝒌
𝑻

𝝆𝒌 =
𝟏

𝒚𝒌
𝑻𝒔𝒌

,  𝒔𝒌 = 𝒘𝒌+𝟏 −𝒘𝒌 and 𝒚𝒌＝𝛻𝐸(𝒘𝒌+𝟏, 𝑿𝒌) − 𝛻𝐸(𝒘𝒌, 𝑿𝒌)

➢ Step size calculated as α𝑘 = 𝜏/(𝜏 + 𝑘)α0

Normal GradientsTwo Gradients per iteration

…(𝐸𝑞. 𝟐𝟏)

… (𝐸𝑞. 𝟐𝟐)

Schraudolph, N.N., Yu, J., Günter, S.: A stochastic quasi-newton method for online convex optimization. In: Artificial Intelligence and Statistics. (2007) 436–443

…(𝐸𝑞. 𝟐𝟎)
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𝑯𝒌+𝟏 = 𝑰 − ρ𝒌𝒑𝒌𝒒𝒌
𝑻 𝑯𝒌 𝑰 − ρ𝒌𝒒𝒌𝒑𝒌

𝑻 + ρ𝒌𝒑𝒌𝒑𝒌
𝑻

NAQ computes two gradients per iteration (on same mini-batch)

𝒑𝒌 = 𝒘𝒌+𝟏 − (𝒘𝒌+𝜇𝒗𝒌)

𝒒𝒌 = 𝛻𝐸 𝒘𝒌+𝟏, 𝑿𝒌 − 𝛻𝐸 𝒘𝒌 + 𝝁𝒗𝒌, 𝑿𝒌 + λ𝒑𝒌

STOCHASTIC NESTEROV’S ACCELERATED QUASI-NEWTON

➢ The update vector of stochastic quasi-Newton (QN) method

𝒗𝒌+𝟏 = −𝜶𝒌𝑯𝒌𝛻𝐸(𝒘𝒌 + 𝝁𝒗𝒌, 𝑿𝒌)

Same 
computational cost 

as o(L)BFGS + 
faster convergence

Reduced sampling 
noise

Indrapriyadarsini S., Shahrzad Mahboubi, Hiroshi Ninomiya, and Hideki Asai. “A Stochastic Quasi-Newton Method with Nesterov’s Accelerated Gradient”, Joint 
European Conference on Machine Learning and Principles of Knowledge Discovery in Databases, ECML-PKDD, Springer, 2019
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Direction Normalization

Further to improve the stability, direction 

normalization is introduced. 

ෝ𝒈𝑘 ← −𝑯𝑘∇𝐸 𝒘𝑘 + 𝜇𝒗𝑘 , 𝑿𝑘

ෝ𝒈𝑘 =
ෝ𝒈𝑘

ෝ𝒈𝑘 2

Normalizing the search direction at each iteration ensures 
that the algorithm does not move too far away from the 
current objective

STOCHASTIC NESTEROV’S ACCELERATED QUASI-NEWTON

Effect of direction normalization

Indrapriyadarsini S., Shahrzad Mahboubi, Hiroshi Ninomiya, and Hideki Asai. “A Stochastic Quasi-Newton Method with Nesterov’s Accelerated Gradient”, Joint 
European Conference on Machine Learning and Principles of Knowledge Discovery in Databases, ECML-PKDD, Springer, 2019

2022-08-04 ACCELERATED STOCHASTIC QUASI-NEWTON METHODS 30



oNAQ ALGORITHM

𝐑𝐞𝐪𝐮𝐢𝐫𝐞 𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ 𝑋𝑘 , 0 < 𝜇 < 1, 𝑘𝑚𝑎𝑥

𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 𝒘𝑘 ∈ ℝ𝑑 , 𝑯𝑘= ϵ𝑰, 𝒗𝑘= 0 and 𝑘 ← 1
𝐰𝐡𝐢𝐥𝐞 𝑘 < 𝑘𝑚𝑎𝑥 𝐝𝐨

1.   ∇𝐸1 ← ∇𝐸 𝒘𝑘 + 𝜇𝒗𝑘 , 𝑿𝑘

2.   ෝ𝒈𝑘 ← −𝑯𝑘∇𝐸 𝒘𝑘 + 𝜇𝒗𝑘 , 𝑿𝑘

3.   ෝ𝒈𝑘 = ෝ𝒈𝑘/ ෝ𝒈𝑘 2

4.   α𝑘 = α0/ 𝑘
5.   𝒗𝑘+1 = 𝜇𝒗𝑘 + α𝑘ෝ𝒈𝑘

6.   𝒘𝑘+1 = 𝒘𝑘 + 𝒗𝑘+1
7.   ∇𝐸2 ← ∇𝐸 𝒘𝑘+1, 𝑿𝑘

8.   𝒑𝑘 ← 𝒘𝑘+1 − (𝒘𝑘 + 𝜇𝒗𝑘)
9.   𝒒𝑘 ← ∇𝐸2 − ∇𝐸1 + λ𝒑𝑘
10. Update 𝑯𝑘

11. 𝑘 ← 𝑘 + 1
𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞

← Direction Normalization

oBFGS ALGORITHM

𝐑𝐞𝐪𝐮𝐢𝐫𝐞 𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ 𝑋𝑘 , 0 < 𝜇 < 1, 𝑘𝑚𝑎𝑥

𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 𝒘𝑘 ∈ ℝ𝑑 , 𝑯𝑘= ϵ𝑰 and 𝑘 ← 1
𝐰𝐡𝐢𝐥𝐞 𝑘 < 𝑘𝑚𝑎𝑥 𝐝𝐨

1.   ∇𝐸1 ← ∇𝐸 𝒘𝑘 , 𝑿𝑘

2.   𝒈𝑘 ← −𝑯𝑘∇𝐸 𝒘𝑘, 𝑿𝑘

3.   𝒈𝑘 = 𝒈𝑘/ 𝒈𝑘 2

4.   α𝑘 = 𝜏/(𝜏 + 𝑘)α0
5.   𝒗𝑘+1 = α𝑘𝒈𝑘

6.   𝒘𝑘+1 = 𝒘𝑘 + 𝒗𝑘+1
7.   ∇𝐸2 ← ∇𝐸 𝒘𝑘+1, 𝑿𝑘

8.   𝒔𝑘 ← 𝒘𝑘+1 −𝒘𝑘

9.   𝒚𝑘 ← ∇𝐸2 − ∇𝐸1 + λ𝒔𝑘
10. Update 𝑯𝑘

11. 𝑘 ← 𝑘 + 1
𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞

← Direction Normalization

COMPARISON OF OBFGS AND ONAQ ALGORITHM
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Two-loop Recursion

𝐑𝐞𝐪𝐮𝐢𝐫𝐞 𝑇ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝛻𝐸 𝜽𝑘 , 𝑿𝑘 ,
𝑚𝑒𝑚𝑜𝑟𝑦 𝑚, curvature pair information

1. 𝜂𝑘 ← −𝛻𝐸 𝜽𝑘 , 𝑿𝑘

2. 𝐟𝐨𝐫 𝑖 = 1,2, … ,𝑚𝑖𝑛 𝑚, 𝑘 − 1 𝐝𝐨

3. 𝛽𝑖 = (𝝈𝑘−𝑖
𝑇 𝜼𝑘)/ (𝝈𝑘−𝑖

𝑇 𝜸𝑘−𝑖)
4. 𝜼𝑘.= 𝜼𝑘 − 𝛽𝑖𝜸𝑘−𝑖
5. end for

6. if k>1

7. 𝜼𝑘.= 𝜼𝑘(𝝈𝑘
𝑇𝜸𝑘)/ (𝜸𝑘

𝑇𝜸𝑘)
8. end if

9. 𝐟𝐨𝐫 𝑖 = 𝑚𝑖𝑛 𝑚, 𝑘 − 1 ,… , 2, 1 𝐝𝐨

10. 𝜏 = (𝜸𝑖
𝑇𝜼𝑘)/ (𝜸𝑖

𝑇𝝈𝑖)
11. 𝜼𝑘.= 𝜼𝑘 − (𝛽𝑖−𝜏)𝝈𝑖
12. end for

13. return 𝜼𝑘

LIMITED MEMORY

𝐇 = 𝛻2𝐸 𝒘 =

𝜕2𝐸

𝜕𝑤1
2

𝜕2𝐸

𝜕𝑤2𝑤1

𝜕2𝐸

𝜕𝑤1𝑤2

𝜕2𝐸

𝜕𝑤2
2

…
…

⋮ ⋮ ⋱
𝜕2𝐸

𝜕𝑤𝑑𝑤1

𝜕2𝐸

𝜕𝑤𝑑𝑤2
…

𝜕2𝐸

𝜕𝑤1𝑤𝐷

𝜕2𝐸

𝜕𝑤2𝑤𝐷

⋮
𝜕2𝐸

𝜕𝑤𝑑
2

𝒈𝑘 ← −𝑯𝑘∇𝐸 𝒘𝑘 , 𝑿𝑘

➢ Require

➢ Store recent m curvature information pairs
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STOCHASTIC NESTEROV’S ACCELERATED QUASI-NEWTON – oNAQ

Results on MNIST Classification 

Indrapriyadarsini S., Shahrzad Mahboubi, Hiroshi Ninomiya, and Hideki Asai. “A Stochastic Quasi-Newton Method with Nesterov’s Accelerated Gradient”, Joint 
European Conference on Machine Learning and Principles of Knowledge Discovery in Databases, ECML-PKDD, Springer, 2019
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STOCHASTIC MOMENTUM ACCELERATED QUASI-NEWTON – oMoQ

Results on MNIST Classification on LeNet-5 

S. Indrapriyadarsini, Shahrzad Mahboubi, Hiroshi Ninomiya, Takeshi Kamio, Hideki Asai, “A Stochastic Momentum Accelerated Quasi-Newton Method for Neural 
Networks (Student Abstract)”, Proceedings of the 36th AAAI Conference on Artificial Intelligence, Feb 2022

𝜵𝑬(𝒘𝒌+𝜇𝒗𝒌) ≈ (1 + 𝜇𝑘)𝜵𝑬(𝒘𝒌) − 𝜇𝑘𝜵𝑬(𝐰𝐤−𝟏)
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STOCHASTIC MOMENTUM / NESTEROV’S ACCELERATED QUASI-NEWTON
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CONVERGENCE ANALYSIS : AN ALTERNATE EXPRESSION

We have, 
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If Assumption 1 holds true, then it implies that the objective function satisfies, 

𝐸𝑏 𝒘𝑘+1 ≤ 𝐸𝑏 𝒘𝑘 + 𝜇𝒗𝑘 + 𝛻𝐸𝑏 𝒘𝑘 + 𝜇𝒗𝑘
𝑇𝒅 +

𝐿

2
𝒘𝑘+1 − (𝒘𝑘+𝜇𝒗𝑘) 2

2

CONVERGENCE ANALYSIS
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And, the stochastic (minibatch) gradient is an unbiased estimator of the full gradient i.e., 

𝔼 𝛻𝐸𝑏 𝒘𝑘 + 𝜇𝒗𝑘 , 𝑋𝑘 ≈ 𝛻𝐸𝑏 𝒘𝑘 + 𝜇𝒗𝑘
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Assumption 3 sets a bound on the stochastic variance noise of the subsampled gradients

CONVERGENCE ANALYSIS

Assumption 2 ensures the subsampled Hessian matrix is symmetric positive semidefinite and bounded



Lemma : If Assumptions 1, 2, and 3 holds true, then the iterates ෝ𝒘𝑘 and the objective function 𝐸(ෝ𝒘𝑘)
satisfy,
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CONVERGENCE ANALYSIS



RECURRENT NEURAL NETWORKS
gradient

Unfolded

timestep T

Solution
Recurrent Neural Networks

▪ Popular for sequence modeling problems

▪ Backpropagation through time

▪ Difficult training long sequences

▪ Vanishing/exploding gradient
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Adaptive Stochastic Nesterov’s Accelerated quasi-Newton – aSNAQ

Indrapriyadarsini S., Shahrzad Mahboubi, Hiroshi Ninomiya, and Hideki Asai. “An Adaptive Stochastic Nesterov’s Accelerated Quasi-Newton Method for Training 
RNNs”, Nonlinear Theory and its Applications, NOLTA, IEICE, 2019 (Best Student Paper Award)

➢ Builds on the algorithmic framework of SQN and adaQN
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➢ Initial Scaling of the LBFGS matrix i.e. 𝑯𝒌
(𝟎)

𝑯𝒌
(𝟎)

is usually initialized as 𝑯𝒌
(𝟎)

=
𝒚𝒌
𝑻𝒔𝒌

𝒚𝒌
𝑻𝒚𝒌

𝑰

Scalar initialization of the L-BFGS matrix does not address the vanishing/exploding gradient issue.

s and y are noisy estimates of the differences of the weights and gradients, and thus could further 

deteriorate the performance.

Therefore 𝑯𝒌
(𝟎)

is initialized in the two-loop recursion algorithm based on the accumulated 

gradient information

[𝑯𝒌
(𝟎)
]𝒊𝒊 =

𝟏

σ𝒋=𝟎
𝒌 𝛻𝐸(𝒘𝒋)𝒊

𝟐 + 𝜺

Adaptive Stochastic Nesterov’s Accelerated quasi-Newton – aSNAQ
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➢ Direction Normalization

Common issue in training RNNs

➢ Exploding gradients – norm of the gradient increases exponentially

➢ Vanishing gradients – norm of the gradient tends to zero exponentially

Thus making it difficult for the model to learn the correlation.

Direction normalization scales the search direction in each iteration by its 𝒍2 norm

𝒈𝑘 ← 𝑯𝒌𝛻𝐸 𝒘𝒌 + 𝜇𝒗𝑘, 𝑿𝒌

𝒈𝑘 =
𝒈𝑘

𝒈𝑘 2
Nesterov’s Accelerated 

Gradient(NAG)

Adaptive Stochastic Nesterov’s Accelerated quasi-Newton – aSNAQ
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➢ Curvature information matrix

QN methods generate high-quality steps even with crude curvature information.

Fisher Information matrix (FIM) yields a better estimate of the curvature.

A FIFO memory buffer 𝑭 of size mF accumulates at each iteration the FIM as

𝐹𝑖 = 𝛻𝐸 𝒘𝑘 𝛻𝐸 𝒘𝑘
𝑇

This accumulated FIM is used in the computation of the 𝒚 vector

𝒚 ←
1

𝐹
(σ𝑖=1

|𝐹|
𝐹𝑖・𝒔) where 𝒔 ← 𝒘𝑛 −𝒘𝑜

Normal Gradients

Adaptive Stochastic Nesterov’s Accelerated quasi-Newton – aSNAQ
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➢ Step acceptance and control

The weights are aggregated every iteration 

𝐯k+1 ← μ𝐯k + αk 𝐠k 𝐰s ← 𝐰s +𝐰k

𝐰k+1 ← 𝐰 k + 𝐯k+1 𝐯s ← 𝐯s + 𝐯k

Weights and Hessian matrix updated once every L 
iterations

𝐰n ← 𝐰s/𝐿 𝐯n ← 𝐯s/𝐿

Store curvature pairs s and y only if they are sufficiently 
large enough.

𝐢𝐟 𝒔𝑻𝒚 > 𝝐 ⋅ 𝒚𝑻𝒚 𝐭𝐡𝐞𝐧

Store curvature pairs (𝒔,𝒚) in (𝑺,𝒀) 

𝐞𝐥𝐬𝐞

Skip storage

Step Control

𝐢𝐟 𝐸 𝐰n > 𝛾E 𝐰𝐨 𝐭𝐡𝐞𝐧

Clear (𝑺,𝒀) and 𝑭 buffer

Reset 𝐰k = 𝐰o and 𝐯k = 𝐯o
Update 𝜇 = max Τ𝜇 𝜙 , 𝜇𝑚𝑖𝑛

𝐞𝐥𝐬𝐞

𝒔 ← 𝒘𝑛 −𝒘𝑜

𝒚 ←
1

𝑭
(σ𝑖=1

|𝑭|
𝑭𝑖・𝒔)

Update 𝜇 = max 𝜇 ⋅ 𝜙, 𝜇𝑚𝑖𝑛

Adaptive momentum

Adaptive Stochastic Nesterov’s Accelerated quasi-Newton – aSNAQ
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Adaptive Stochastic Nesterov’s Accelerated quasi-Newton – aSNAQ
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CONVERGENCE ANALYSIS : aSNAQ

2022-08-04 ADAPTIVE STOCHASTIC NESTEROV’S ACCELERATED STOCHASTIC QUASI-NEWTON 47

Assumption 1 : Lipschitz continuity

Assumption 2 : Subsampled Hessian is symmetric positive semidefinite and bounded

Assumption 3 : Stochastic variance noise < 𝛾2

Assumption 4 : Step size 𝛼 is non summable but square summable

RECALL



Adaptive Stochastic Nesterov’s Accelerated quasi-Newton – aSNAQ
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MNIST row-by-row sequencing

T = 28



Adaptive Stochastic Nesterov’s Accelerated quasi-Newton – aSNAQ

MNIST pixel-by-pixel sequence
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T = 784



Adaptive Stochastic Nesterov’s Accelerated quasi-Newton – aSNAQ

Character Level Language modeling (5-layer RNN) Character Level Language modeling (2-layer LSTM)
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aSNAQ FOR REINFORCEMENT LEARNING

• The Reinforcement Learning problem is modelled as a 

Markov’s Decision Process (MDP).

• To solve the MDP, the estimates of the value function of all 

possible actions is learnt using Q-learning, a form of 

temporal difference learning

• The optimal action-value function satisfies the Bellman 

equation to maximize the cumulative reward 

𝑄∗ 𝑠, 𝑎 = 𝐸𝑠′~𝜁[𝑅 + 𝛾 𝑚𝑎𝑥𝑎′𝑄
∗(𝑠′, 𝑎′)|𝑠, 𝑎] …(𝐸𝑞. 𝟐𝟑)
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In deep Q-learning, this function is optimized by a neural network parameterized by w.

The loss function 𝐿(𝑤) is given as, 

where

𝐿 𝑤 = 𝐸(𝑠,𝑎)~𝜁[(𝑌 − 𝑄𝑤(𝑠, 𝑎))
2]

𝑌 = 𝐸𝑠′~𝜁[𝑅 + 𝛾 𝑚𝑎𝑥𝑎′𝑄𝑤(𝑠
′, 𝑎′)]

Deep Q-Network (DQN)

𝑄
𝑤
(𝑠
,𝑎
)

st
at

es

…(𝐸𝑞. 𝟐𝟒)

… (𝐸𝑞. 𝟐𝟓)

aSNAQ FOR REINFORCEMENT LEARNING

Bellman error 𝐿(𝑤) non-convex function

• The Reinforcement Learning problem is challenging to train

• Samples are a continuous stream of experiences unlike batches in supervised learning

• Makes it more prone to unlearning effective features over time
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PCB ROUTING USING REINFORCEMENT LEARNING

Agent

Policy
π

RL 
Algorithm

u
p

d
at

e

Synthesis and physical design optimizations are the core tasks of the VLSI /

ASIC design flow. Global routing has been a challenging problem in IC

physical design.

Objective

Given a netlist with the description of all the components, their

connections and position, the goal of the global router is to determine the

path of all the connections without violating the constraints and design

rules.

• Route all pins and nets

• Minimize total wirelength (WL)

• Minimize total overflows

Conventional routing automation tools are usually based on analytical and 

path search algorithms which are NP complete.

S. Indrapriyadarsini, Shahrzad Mahboubi, Hiroshi Ninomiya, Takeshi Kamio, Hideki Asai, “A Nesterov’s Accelerated quasi-Newton method for Global Routing 
using Deep Reinforcement Learning”, International Symposium on Nonlinear Theory and its Applications, NOLTA, IEICE, 2020 (Student Paper Award) -
(Extended paper – NOLTA journal IEICE, Jul 2021)
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Objective function:

𝐿 𝑤 = 𝐸(𝑠,𝑎)~𝜁[(𝑌 − 𝑄𝑤(𝑠, 𝑎))
2]

where

𝑌 = 𝐸𝑠′~𝜁[𝑅 + 𝛾𝑄𝑤−(𝑠′, 𝑎𝑟𝑔𝑚𝑎𝑥𝑎′𝑄𝑤 𝑠′, 𝑎′ )]

Objective

• Route all pins and nets

• Minimize total wirelength (WL)

• Minimize total overflows
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• Each Netlist – 50 two-pin pairs

• Max episode 𝜀 = 500

• WL (・) : wirelength (overflow) evaluated by

ISPD’08 contest evaluator

• – indicates could not be routed within 𝜀

• diff wirelength reduction compared to A*

Adam RMSprop aSNAQ

Success 23/30 20/30 26/30

diff 110 71 319

Problem set generator : H. Liao, et. al, “A deep reinforcement learning 
approach for global routing,” Jour. Mech. Design, vol. 142(6), June 2020
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Key Takeaways

▪ In RL the training set is dynamically populated

▪ DQNs use mean-squared Bellman (non-convex function)

▪ Second order methods – aSNAQ show better convergence 
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OTHER QUASI-NEWTON METHOD + NESTEROV’S ACCELERATION ?

*Wikipedia
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ACCELERATING SR1 WITH NESTEROV’S GRADIENT

S. Indrapriyadarsini, Shahrzad Mahboubi, Hiroshi Ninomiya, Takeshi Kamio, Hideki Asai, “Accelerating Symmetric Rank 1 Quasi-Newton Method with Nesterov’s
Gradient”, Algorithms 2022, 15(1), 6;

➢ Quasi-Newton + Nesterov’s acceleration satisfies secant condition

➢ The Hessian is updated using the Symmetric rank-1 update formula given as

➢ Ensure positive semi-definiteness by performing the update only if
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SR1 + NESTEROV’S ACCELERATION (FULL BATCH)

S. Indrapriyadarsini, Shahrzad Mahboubi, Hiroshi Ninomiya, Takeshi Kamio, Hideki Asai, “Accelerating Symmetric Rank 1 Quasi-Newton Method with Nesterov’s
Gradient”, Algorithms 2022, 15(1), 6;

Average results on levy function approximation problem with  mL=10  (full batch).
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Results of MNIST on LeNet-5 architecture with  b=256  and  mL=8 .

SR1 + NESTEROV’S ACCELERATION (STOCHASTIC) 

S. Indrapriyadarsini, Shahrzad Mahboubi, Hiroshi Ninomiya, Takeshi Kamio, Hideki Asai, “Accelerating Symmetric Rank 1 Quasi-Newton Method with Nesterov’s
Gradient”, Algorithms 2022, 15(1), 6;
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If Assumption 1 holds true, then it implies that the objective function satisfies, 

𝐸 𝒘𝑘+1 ≤ 𝐸 𝒘𝑘 + 𝜇𝒗𝑘 + 𝛻𝐸 𝒘𝑘 + 𝜇𝒗𝑘
𝑇𝒅 +

𝐿

2
𝒘𝑘+1 − (𝒘𝑘+𝜇𝒗𝑘) 2

2

Assumption 2 ensures Hessian matrix is symmetric positive semidefinite and bounded

S. Indrapriyadarsini, Shahrzad Mahboubi, Hiroshi Ninomiya, Takeshi Kamio, Hideki Asai, “Accelerating Symmetric Rank 1 Quasi-Newton Method with Nesterov’s
Gradient”, Algorithms 2022, 15(1), 6;

CONVERGENCE ANALYSIS
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Assumption 3 ensures that the subproblem solved by the trust region method is sufficiently 

optimal at each iteration.

S. Indrapriyadarsini, Shahrzad Mahboubi, Hiroshi Ninomiya, Takeshi Kamio, Hideki Asai, “Accelerating Symmetric Rank 1 Quasi-Newton Method with Nesterov’s
Gradient”, Algorithms 2022, 15(1), 6;

CONVERGENCE ANALYSIS
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Lemma : If Assumptions 1 to 3 holds true, and 𝒔𝑘 be an optimal solution to the trust region subproblem, and 

if the initial Hessian 𝑯𝑘+1 = γ𝑘 is bounded (i.e., 𝟎 ≤ γ𝑘 ≤ ොγ𝑘) then for all 𝑘 ≥ 0, the Hessian update given 

by the SR1+N algorithm is bounded 

Theorem : Given a level set Ω =  {𝒘 ϵ ℝ𝑑 ∶ 𝐸 𝒘 < 𝐸(𝒘0)} that is bounded, let {𝒘𝑘} be the sequence of 

iterates generated by the SR1+N algorithm. If Assumptions 1 to 3 holds true, then, 

S. Indrapriyadarsini, Shahrzad Mahboubi, Hiroshi Ninomiya, Takeshi Kamio, Hideki Asai, “Accelerating Symmetric Rank 1 Quasi-Newton Method with Nesterov’s
Gradient”, Algorithms 2022, 15(1), 6;

CONVERGENCE ANALYSIS
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CONCLUSION

➢ Second order methods show better convergence compared to first order methods in training 
neural networks.

➢ Proposed a family of stochastic Nesterov and momentum accelerated second order methods 
for training neural networks

➢ o(L)NAQ / o(L)MoQ ➞ accelerate conventional o(L)BFGS method, stochastic

➢ aSNAQ ➞ RNNs, deep Q-networks

➢ L-SR1-N  ➞ confirmed feasibility of Nesterov’s acceleration in rank-1 methods
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CONCLUSION

➢ Empirically demonstrated the robustness and efficiency of Nesterov and momentum 
accelerated quasi-Newton methods in training neural networks

➢ oLNAQ and oLMoQ > o(L)BFGS, Adam, SGD 

➢ aSNAQ ➞ efficient in training long sequence RNNs

➢ L-SR1-N ➞ improved the performance of L-SR1 to the level of rank-2 methods.

➢ Provided theoretical analysis on convergence of stochastic Nesterov and momentum 
accelerated NAQ and MoQ methods and analyzed computational cost 

➢ Limited memory forms showed computational cost in the order O(d)

➢ Convergence guarantees with atleast linear rate.
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FUTURE WORKS

➢ Parallel and distributed implementations, with efficient techniques to reduce overheads

• R. Anil, et. al, “Scalable second order optimization for deep learning,” arXiv preprint 
arXiv:2002.09018, 2020.

• Y. Fei, et. al, “Parallel l-bfgs-b algorithm on gpu,” Computers & graphics, vol. 40, pp. 1–9, 2014.
• W. Chen, et. al, “Large-scale l-bfgs using mapreduce,” Advances in neural information processing 

systems, vol. 27, 2014.

➢ Reduce sampling noise with overlapping and multi-batch strategies

• K. Crammer, A. Kulesza, and M. Dredze, “Adaptive regularization of weight vectors,” Advances in 
neural information processing systems, vol. 22, 2009.
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